

¹⁵N NMR relaxation data as structural restraints

for

assembling *protein complexes* and

structure determination of *globular proteins*

Yaroslav Ryabov

OUTLINE

NMR relaxation data and different types of protein motions

Modeling of protein diffusion tensor

Docking protein—protein complexes using NMR relaxation data components of diffusion tensor or ratio of relaxation rates

Uncertainties and Errors in experimental data

Structure determination of globular proteins

Using NMR relaxation data in Xplor-NIH

Longitudinal relaxation rate

Transverse relaxation rate

Orientation correlation function

Overall Rotations

Domain Motions

Local Motions

Dynamic information as structural restraints

Assumption: NO internal dynamics

Depend on Principal Values D_x D_y D_z of <u>overall</u> **Diffusion Tensor**

Dependency on <u>residue specific</u> Euler angles Ω Which define orientation of NH bond with respect to Principal axis of **Diffusion Tensor**

Perrin F, 1934,1936; Favro DL, 1960; Woessner DE, 1962

Overall shape restraints from Diffusion tensor

$\lceil D_{\scriptscriptstyle X} ceil$	0	0
0	D_{y}	0
\bigcup 0	0	$D_z igg floor$

3 Euler angles for **Diffusion Tensor PAF**

Diffusion Properties of Proteins

from ellipsoid model

Why an ellipsoid model?

Diffusion Tensor

$$egin{bmatrix} D_x & 0 & 0 \ 0 & D_y & 0 \ 0 & 0 & D_z \end{bmatrix}$$

Ellipsoid Shell

3 Euler angles for **Diffusion Tensor PAF**

3 Euler angles for **Ellipsoid orientation**

Hydration shell

Hydration shell

Hydration shell Equivalent ellipsoid is approximately twice bigger

A Very General Concept: using components of diffusion tensor overall shape restraints from NMR relaxation data

 During the course of structure elucidation build an equivalent ellipsoid for every snapshot of protein structure conformation

 Then calculate parameters of protein diffusion tensor using the equivalent ellipsoid shape

$$egin{bmatrix} D_x & 0 & 0 \ 0 & D_y & 0 \ 0 & 0 & D_z \ \end{bmatrix}$$

 Compare calculated diffusion tensor parameters with those which were derived from the experimental data and establish a pseudo energy term proportional to the sum of square differences between components of calculated and experimental diffusion tensors

$$\chi^{2} = \sum_{\substack{i=1,3 \ j=i,3}} (D_{i,j}^{calc} - D_{i,j}^{exp})^{2}$$

Assembling structures of multi domain proteins using the overall shape restraints provided by the diffusion tensor

Global restraints on Overall shape

Assembling structure of a symmetric protein homo dimer

Assembling structure of a symmetric protein homo dimer

Generic docking protocol

Part I:

Rigid body dynamics for raw domain positioning.

Part II:

Simulated annealing with flexible side chains for final adjustment.

Assembling structure of a symmetric protein homo dimer

HIV -1 protease

Shape restraints from Components of diffusion tensor

10 lowest energy structures

Averaged over 10 lowest energy structures (blue) versus reference (red)

 $C\alpha \text{ RMSD}$ 0.35 ±0.09 [Å]

Shape restraints from Components of diffusion tensor

EIN – HPr complex

EIN – HPr complex

10 lowest energy structures

Shape restraints from Components of diffusion tensor

EIN – HPr complex

10 lowest energy structures

Shape restraints from Components of diffusion tensor

Shape restraints from Components of diffusion tensor

EIN – HPr complex

 $C\alpha$ RMSD

1.20 ±0.03 [Å]

10 lowest energy structures

Using both shape and orientation restraints ratio of relaxation rates

Ratio of relaxation rates "almost" independent of local motions

$$\frac{R_2}{R_1} = \frac{4J(0) + 6J(\omega_H - \omega_N) + J(\omega_H + \omega_N) + 6J(\omega_H) + 3J(\omega_N)}{2[6J(\omega_H - \omega_N) + J(\omega_H + \omega_N) + 3J(\omega_N)]}$$

Using both shape and orientation restraints ratio of relaxation rates

Bond Orientation

$$\chi^2 \sim \sum_{i} \left(\frac{(R_2/R_1)_i^{calc} - (R_2/R_1)_i^{exp}}{\sigma_i^{err}} \right)^2$$

Energy of a potential term

Using both shape and orientation restraints

 R_2/R_1 ratio of relaxation rates

10 lowest energy structures from the red cluster

Cα RMSD

 $0.30 \pm 0.06 \, [\text{Å}]$

Using both shape and orientation restraints

 R_2/R_1 ratio of relaxation rates

Symmetry in orientation information

Using both shape and orientation restraints

 R_2/R_1 ratio of relaxation rates

10 lowest energy structures from the most populated cluster B

Cα RMSD

1.73 ±0.20 [Å]

Uncertainties in experimental data

Scaling factor for the diffusion tensor

Sample Temperature

and uncertainties in

Thickness of hydration layer

Could be compensated by adjustment of setup for

Apparent "experimental" temperature

Effect of temperature settings

Nominal temperature: 313 K Temperature of the minimum: 316 K

Uncertainties in thickness of hydration layer, sample temperature, and sample viscosity

Effect of temperature settings

Nominal temperature: 313 K Optimized Temperature: 315.3 ± 0.5

Temperature of the minimum: 316 K

Uncertainties in thickness of hydration layer, sample temperature, and sample viscosity

Possible reasons for errors in experimental data

- Internal motions
- Errors in domain structure (for docking)
- Systematic and random errors in data acquisition

Iterative pre-filtering procedure

$$\Delta = (R_2/R_1)^{calc} - (R_2/R_1)^{exp}$$

Rule out the data point with the largest absolute deviation $|\Delta|$

Iterative pre-filtering procedure

$$\Delta = (R_2/R_1)^{calc} - (R_2/R_1)^{exp}$$

Rule out the data point with the largest absolute deviation $|\Delta|$ *iteratively*

Iterative pre-filtering procedure

$$\Delta = (R_2/R_1)^{calc} - (R_2/R_1)^{exp}$$

 $\sigma(\Delta)$ standard deviation

Threshold 1.5σ ~ 13% of the whole data set

Iterative pre-filtering procedure

Generates constant list of outliers

Acceptable for docking applications when initial domain structures are known

But

Unacceptable for structure determination

"Errors" in experimental data

Energy~
$$\sum \left(\frac{\Delta_i}{\sigma_i^{err}}\right)^2$$

$$\Delta_i = (R_2/R_1)_i^{calc} - (R_2/R_1)_i^{exp}$$

Energy~
$$\sum \frac{f(\Delta_i)}{\left(\sigma_i^{err}\right)^2}$$

$$f(\Delta_i) = \begin{cases} \Delta_i^2, & |\Delta_i| \le \Delta_{cut} \\ a + b|\Delta_i|^{-\alpha}, & |\Delta_i| > \Delta_{cut} \end{cases}$$

$$\Delta_{cut} = |\langle \Delta_i \rangle| + 1.5 \sigma(\Delta_i)$$

 $\sigma(\Delta_i)$ standard deviation

 $\langle \Delta_i \rangle$ mean for the set of Δ_i

Gb 3: b.b.C α RMSD 3.2 [Å]

Experimental restraints:

Dihedral angles from TALOS+ predictions
Back Bone Hydrogen bonds connectivity

Ubiquitin: b.b.C α RMSD 3.5 [Å]

Gb 3: b.b.C α RMSD 1.1 [Å]

Ubiquitin: b.b.C α RMSD 1.8 [Å]

Experimental restraints:

Dihedral angles from TALOS+ predictions + Back Bone Hydrogen bonds connectivity

R₂/R₁ ratios of ¹⁵N relaxation rates

EIN: b.b.C α RMSD 14.7 [Å]

Experimental restraints:

Dihedral angles from TALOS+ predictions
Back Bone Hydrogen bonds connectivity
and

limited set of 804 NOEs for methyl and HN protons

Experimental restraints:

Dihedral angles from TALOS+ predictions
Back Bone Hydrogen bonds connectivity
and

<u>limited set of 804 NOEs</u> for methyl and HN protons

+

R₂/R₁ ratios of ¹⁵N relaxation rates

Future challenges

Computational / Theoretical

- Inhomogeneous hydration layer
- Treatment of internal motions
- Better models for diffusion tensor predictions

Future challenges

Experimental / Spectroscopic

- Temperature control and calibration
- Viscosity measurements
- Better spectroscopic techniques

Xplor-NIH facilities

Potential Terms

<u>DiffPot</u> restrains shape of a protein or a complex

input: components of diffusion tensor

features: temperature optimization

RelaxRatioPot restrains overall shape

and individual bond ordinations

input: NMR relaxation data

features: temperature optimization

adaptive filtering

multiple fields

site specific CSA (optional)

switching off/on gradients

on shape/NH orientations (optional)

Xplor-NIH facilities

Service functions

Calculation of diffusion tensor for given structure

build into DiffPot and RelaxRatioPot

Relaxation Data Processing

<u>fitRelaxData</u> Fitting data to structure:

different fitting models

estimation of errors

in fitting parameters (optional)

<u>filter_data</u> Iterative data filtering

multi-domain systems

multiple fields

Xplor-NIH facilities

Examples and Helps

in every **Xplor-NIH** installation

~/xplor/eginput/

Example scripts for using DiffPot and RelaxaRatioPot Sample scripts for

- Docking
- Refinement
- Structure determination

with all necessary sample data files

Helper scripts for data fitting and filtering

Relevant publications

- Y. Ryabov, G. M. Clore, C. D. Schwieters *JACS*, v. 133(16) (2011) pp. 6154–6157
- Y. Ryabov, G. M. Clore, C. D. Schwieters *JACS*, v. 132(17) (2010) pp. 5987–5989.
- Y. Ryabov, J.-Y. Suh, A. Grishaev, G. M. Clore, C. D. Schwieters *JACS*, v. 131(27) (2009) pp. 9522–9531.
- Y. Ryabov, D. Fushman *JACS*, v. 129(25) (2007) pp. 7894-7902.
- Y. Ryabov, C. Geraghty, A. Varshney, and D. Fushman *JACS*, v. 128(48), (2006) pp. 15432-15444.

ACKNOWLEDGMENTS

G Marius Clore
Charles Geraghty
Alexander Grishaev
David Fushman
Charles D Schwieters
Jeong-Yong Suh
Amitabh Varshney