

Model of Large Scale Conformation Mobility in Proteins

Yaroslav Ryabov,

G Marius Clore, Charles D Schwieters

Outline

- Conformational transitions on different time scales
- Model of conformation transitions between discrete states
- Closed form expression for correlation function
 Time domain vs. Frequency domain
- What to expect: Illustrative calculations

Time scale of Conformational transitions

$$\tau_c = \frac{1}{k_{AB} + k_{BA}}$$

Time scale of Rotational diffusion

$$\tau_{\mathfrak{D}} = \frac{1}{2(\mathfrak{D}_{x} + \mathfrak{D}_{y} + \mathfrak{D}_{z})}$$

Conformation transitions on different time scales

State A

Slow Exchange

$$au_c \gg au_{\mathfrak{D}}$$

Approximation of two species with two different structures and two diffusion tensors

$$\mathfrak{D}^A$$
 and \mathfrak{D}^B

Conformation transitions on different time scales

State A

Fast Exchange

$$au_{c} \ll au_{\mathfrak{D}}$$

Approximation of single conformer with one averaged structure and one averaged diffusion tensor

Conformation transitions on different time scales

Intermediate Exchange

State A

$$\tau_c \sim \tau_{\mathfrak{D}}$$

Rotational diffusion of semi-Rigid molecule

Conformation transition between discrete set of states

- Molecule tumbles in isotropic solvent
- Molecule exchanges between discrete conformations $\varepsilon = A, B, ...$
- In each conformation state molecule is rigid and has diffusion tensor $\mathfrak{D}^{\mathcal{E}}$
- The transition time is much shorter than the time which molecule spends in any conformation

Berne, Pecora (1968); Wong, Case and Szabo (2009)

Relationships between experimental observables and theoretical calculations

Orientation correlation function

Experimental observables: R1, R2 etc.

Solution in time domain cannot be represented in closed forms due to Abel impossibility theorem (1824)

Orientation correlation function

$$C_l(t) = \langle P_l[\boldsymbol{n}(t) \cdot \boldsymbol{n}(0)] \rangle$$

Poster # 396

Chopin Ballroom, Thursday 2:00 -3:45 pm

Ryabov, Clore, Schwieters, JCP **136** (2012) 034108

Rotational diffusion of semi-Rigid molecule

Correlation function in frequency domain

Ryabov, Clore, Schwieters (2012)

$$\hat{C}_{l}(i\omega) = \frac{4\pi}{2l+1} \sum_{\varepsilon,\eta} \mathbf{Y}_{l}^{T}(\Omega_{\varepsilon I}) \mathbf{A}^{\varepsilon,l\dagger} \mathbf{R}^{l,\varepsilon\eta}(i\omega) \mathbf{A}^{\eta,l} \mathbf{Y}_{l}^{*}(\Omega_{\eta I}) P_{eq}^{\eta}$$

Spectral density
$$J(\omega) = Re\{\hat{C}(i\omega)\}$$

$$\hat{C}_{l}(i\omega) = \frac{4\pi}{2l+1} \sum_{m=-l}^{l} \sum_{\varepsilon,\eta} f_{l,m}^{\varepsilon\eta}(i\omega) Y_{l,m}(\Omega^{\varepsilon}) Y_{l,m}^{*}(\Omega^{\eta}) P_{eq}^{\eta}$$

Berne, Pecora (1968); Wong, Case and Szabo (2009)

El dimer

Estimations of XplorNIH @ 300 K

$$\mathfrak{D}_{x}^{A} = 29.16 \times 10^{7} [s^{-1}] \qquad \tau_{\mathfrak{D}}^{A} = 53.73 [ns]$$

$$\mathfrak{D}_{v}^{A} = 31.47 \times 10^{7} [s^{-1}]$$

$$\mathfrak{D}_z^A = 32.43 \times 10^7 \, [s^{-1}]$$

$$\mathfrak{D}_{x}^{B} = 15.71 \times 10^{7} [s^{-1}] \qquad \tau_{\mathfrak{D}}^{B} = 79.99 [ns]$$

$$\mathfrak{D}_y^B = 15.82 \times 10^7 \, [s^{-1}]$$

$$\mathfrak{D}_z^B = 30.99 \times 10^7 [s^{-1}]$$

Assumptions

Symmetric motions Ω_{AB} : { $\alpha_{AB} = 0, \beta_{AB} = 0, \gamma_{AB} = 0$ }

Equal occupation $P_{eq}^A = P_{eq}^B = 1/2$ $k_{AB} = k_{BA}$

NMR relaxation rates for 600 MHz @ 300 K

$$k = \frac{2}{\tau_{\mathfrak{D}}^{A} + \tau_{\mathfrak{D}}^{B}} = 155.57 \ [ns^{-1}]$$

NMR relaxation rates for 600 MHz @ 300 K

$$k_{slow} = 0.1 \times k$$

$$k = \frac{2}{\tau_{\mathfrak{D}}^{A} + \tau_{\mathfrak{D}}^{B}} = 155.57 \ [ns^{-1}]$$

NMR relaxation rates for 600 MHz @ 300 K

$$k_{slow} = 0.1 \times k$$

$$k = \frac{2}{\tau_{\mathfrak{D}}^A + \tau_{\mathfrak{D}}^B} = 155.57 \ [ns^{-1}]$$

$$k_{fast} = 10 \times k$$

Concluding notes

Our Model

- Provides closed form solutions in frequency domain ready for evaluation of spectral density etc.
- Provides known limiting cases and is reproduced by Monte Carlo simulations
- Not universal: discusses only the transitions between discrete states
- However, accounts for arbitrary symmetry of diffusion tensors, arbitrary reorientation of molecules upon conformation transition, and coupling between diffusion tumbling and conformation exchange

Acknowledgments

Co-Authors

- Charles D. Schwieters
- G. Marius Clore

Extremely Useful Discussions

- Alexander Berezhkovskii
- Attila Szabo