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ABSTRACT

A new method of droplet collision acceleration, with the purpose of rain enhancement and fog elimination,
is proposed. According to the method, some fraction of the droplets is taken from clouds (or fog) themselves,
charged, and then injected back into clouds (or fog). To verify the efficiency of the method, a novel model has
been developed, allowing simulation of droplet spectrum evolution by collision in case a certain fraction of the
droplets in a droplet spectrum is charged. Simulations of droplet spectra evolution include several steps: (a) The
forces arising between charged and neutral droplets, as well as between charged droplets, are calculated as the
function of the value of the charges, droplet size, and distance between droplets. It is shown that because of
the induction effect, significant attraction forces arise between charged and neutral droplets. (b) The results
obtained have been used to calculate the collision efficiencies between charged and neutral, as well between
charged droplets. As a result, a ‘‘four dimensional’’ table of the collision efficiencies (the collision efficiency
is the function of the droplet size and charge) was calculated. The collision efficiencies between charged and
neutral droplets turn out to be significantly higher than the pure gravity-induced values. (c) To accomplish these
simulations, a novel numerical method of solving the stochastic collision equation has been developed. Cloud
droplets are described by a two-dimensional size distribution function in which droplets are characterized by
both their mass and charge. (d) This model, with the implemented table of the collision efficiencies, has been
used to simulate droplet spectra evolution in clouds and fog in case some fraction of these droplets was charged.
Simulations of the effects of seeding by charged droplets have been performed. Evolution of initially narrow
droplet size spectra (typical of extremely continental clouds in highly smoky air), in the case of seeding and
under natural conditions, has been simulated. It was shown that although a natural droplet spectrum does not
develop and no raindrops are formed, the injection of just a small fraction of charged particles rapidly triggered
the collision process and lead to raindrop formation a few minutes after the injection. Significant acceleration
of raindrop formation has been found in the case of a maritime wide-droplet spectrum. Simulations of fog
seeding were conducted using droplet spectra distributions of typical fog. Seeding by charged fog droplets of
one or both polarities was simulated. In both cases a significant increase in fog visibility was found. The
advantages of the seeding method proposed are discussed.

1. Introduction

Rain enhancement and fog elimination are two main
fields of weather modification activities that have at-
tracted researchers’ attention for many years. Enhance-
ment of rain is of special importance in countries suf-
fering from water shortage for agriculture and other hu-
man activities. Fog elimination is highly necessary, for
example, to increase visibility, on roads and runways
of airports. On the other hand, a shortage of freshwater
in some of the mountainous, desert, semidesert, and
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coastal regions shapes human thinking about the meth-
ods of the utilization of fog as an alternative source of
freshwater in these regions.

The necessity of special approaches (i.e., cloud seed-
ing for rain enhancement purposes) is related to the fact
that the natural process of collisions in clouds (and fog)
begins only when droplet size distributions (DSDs) con-
tain a significant concentration of droplets with radii
over 20–25 mm (Pruppacher and Klett 1997). Collision
efficiencies of droplets with smaller radii are too small
to allow for efficient collisions between small droplets.
Because the process of diffusion (condensational) drop-
let growth is quite slow, the time needed for droplets
to reach a size large enough to trigger collisions is often
too long. As a result, these small droplets may be trans-
ported to the upper troposphere by high vertical veloc-
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ities in convective clouds and freeze to small ice crys-
tals, spreading over a large area without any contribution
to precipitation. This situation is typical, for instance,
of deep summertime Texas clouds, where the droplet
spectrum remains narrow up to the homogeneous freez-
ing level of 2388C (9.5 km) (Rosenfeld and Woodley
2000; Khain et al. 2001). As a result, deep clouds with
cloud tops above 10–12 km do not precipitate, or pre-
cipitate only slightly.

Visibility in fog is determined by a high concentration
of small droplets (5–10 mm). A decrease in droplet con-
centration due to collisions (accompanied by the for-
mation of larger droplets with a greater sedimentation
velocity) would lead to an increase in visibility (fog
elimination). However, the supersaturation value in fog
is usually very low, which makes diffusional droplet
growth very slow (if at all) and prevents droplet col-
lisions, because the efficiency of collisions between
small droplets is negligible.

Thus, the main problem that should be solved by
seeding both clouds and fog is the acceleration of the
process of droplet collisions.

The main idea of hygroscopic seeding, widely em-
ployed at present for weather modification purposes, is
to increase the rate of droplet collisions by increasing
the concentration (or creation) of large droplets in the
DSD. Usually, clouds are seeded by soluble particles,
which play the role of cloud condensational nuclei
(CCN). It is assumed that the spectrum of seed particles
contains large CCN. The droplets grown on these CCN
are larger than natural droplets and attain the size needed
for collision triggering earlier (and at lower levels) than
the other droplets.

The prior art hygroscopic seeding techniques suffer
from numerous drawbacks. For example, when granular
materials are used as seed agents, their hygroscopic na-
ture often causes agglomeration and caking when in
storage, even in the presence of a low moisture content.
These negative phenomena lead to the creation of par-
ticles of sizes, which are usually much greater than the
desired value, that are, for example, about 1–10 mm in
radius. Although huge hygroscopic particles could be
appropriate for the creation of large drop collectors, such
particles are rather heavy for transportation by airplanes
to provide the desirable concentration of such particles
into clouds.

Another example of hygroscopic materials widely
used for cloud seeding is the particles obtained by burn-
ing (i.e., flares) (Mather et al. 1996, 1997; Bigg 1997;
Silverman and Sukarnjanaset 2000). A randomized ex-
periment of seeding young, growing tropical convective
clouds by large hygroscopic particles prior to the for-
mation of the first radar echo has produced evidence of
an accelerated collision–coalescence process and
showed a statistically significant increase in the raindrop
formation rate (Silverman and Sukarnjanaset 2000).

Despite these encouraging results, many unresolved
problems still remained (Bruintjes 1999). For instance,

according to Woodley and Rosenfeld (1999), apparent
rain enhancement may come from the large-particle tail
(i.e., giant CCN) of the particulate distribution from the
flares. If so, the concentrations of these giant CCN are
far below the optimum. There is a risk that such a small
concentration of these particles may be conducive only
to the formation of isolated large raindrops that produce
strong radar echoes but may not lead to rain intensifi-
cation. This would cause an overestimation of the in-
dicated seeding effect when evaluated with the weather
radar using a fixed reflectivity–rain rate relationship
(Yin et al. 2001).

Numerical simulations of hygroscopic seeding effects
on precipitation, conducted by Reisin et al. (1996), using
an axisymmetric spectral microphysics cloud model,
and Yin et al. (2000), using a 2D slab-symmetry model,
revealed a significant potential for rain enhancement.
Segal et al. (2004) used a very precise spectral (bin)
microphysics cloud parcel model in numerical simula-
tions of hydroscopic seeding of clouds with commercial
flares. They showed that the utilization of typical com-
mercial flares did not lead to any significant acceleration
of raindrop formation in ascending cloud parcels. The
latter result is explained by the fact that commercial
flares contain mainly small particles, leading to the
growth of small droplets. Because the effects of small
and large particles on the DSD broadening and the for-
mation of large droplets are quite opposite, the total
effect of seeding is not clear. In the experiments by Segal
et al. (2004), the positive effect of large seed particles
is largely compensated by the negative effect of a huge
number of small seed CCN (which leads to an increase
in the droplet concentration slowing down droplet
growth).

The hygroscopic seeding of warm fog aims at the
decrease in humidity by absorption of water vapor on
large seeding particles. If the mass of seeding salt par-
ticles is large enough, the air humidity becomes lower
and may lead to the evaporation of the smallest fog
droplets (while hygroscopic particles will grow). The
efficiency of the method is low because (a) a quite high
concentration of large hydroscopic particles should be
injected to decrease the concentration of fog droplets
by a few percent, and (b) after a short time the water
fraction in the hygroscopic particles increases and the
competition mechanism becomes inefficient.

Thus, both from the theoretical point of view and
because of certain technical difficulties, hydroscopic
seeding (at least, at present) does not ‘‘close’’ the prob-
lem of rain enhancement. The creation of large droplets
by hygroscopic seeding with large CCN is not the only
way to increase the collision efficiency. Based on the
utilization of the ‘‘gravity induced’’ mechanism of drop-
let collisions, this method may not be optimal (and, at
least, not exhaustive). It allows one to look for other
methods leading to rain enhancement. In this study, we
propose a new method of acceleration of droplet col-
lisions aimed at rain enhancement and fog elimination.
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Electrostatic effects are known to play an important role
in the cloud microphysics (Pruppacher and Klett 1997;
Tinsley et al. 2000, 2001). Cloud droplets can be
charged by different mechanisms, such as ion diffusion,
convection charging, inductive charging, thermoelectric
effects, contact potential effects, and so on. (Pruppacher
and Klett 1997, p. 811–827). DuBard et al. (1983) man-
aged to charge 1-mm-radius aerosol particles by free
electrons to values exceeding more than 103 elementary
charges. Such a particle charge is close to the maximal
one (see below).

Effects of the droplet charge were studied in relation
to aerosol scavenging and atmospheric cleaning. Grover
and Beard (1975) calculated collision efficiencies be-
tween droplets with the radii ranging from 42 to 142
mm and small particles with radii of 0.4 and 4.0 mm.
Calculations were conducted both for cases when drop-
lets and particles were assumed to be conducting spheres
and for cases when the charges were assumed to be in
the center of nonconducting spheres. They found a sig-
nificant increase in collision efficiency when the drop-
lets were loaded with a charge of the magnitude typical
of thunderstorm clouds [.7 3 104 elementary (electron)
charges], while small particles were charged with charg-
es of the opposite polarity.

Wang et al. (1978) conducted a set of calculations of
the collision efficiency between charged aerosol parti-
cles and droplets, assuming that (a) colliding particles
have the opposite polarity, and (b) attraction between
the colliding particles arises due to the attraction of point
charges located in the particle center. In the calculations
the charges on colliding particles and droplets were as-
sumed to be proportional to the square of their radii, so
that the droplet charge was always much greater than
the particle charge. In the work cited, the charge of a
droplet was thousands of elementary charges and the
charge of an aerosol particle was from 1 to more than
40 elementary charges. In this case, a modest increase
in the collision rate was found for aerosol particles of
radii 0.1–1.0 mm, with droplets of radii of a few tens
of microns. The droplet charge used in the simulations
was of the same order of magnitude as that produced
in thunderstorms. The general conclusion drawn from
these and other results was the following: beyond the
regions of thunderstorm processes, the effect of elec-
trical forces on particle–droplet collision efficiency for
natural clouds is comparatively weak.

Note that this result was obtained for very low charg-
es on aerosol particles, and in neglecting image charge
forces (induced charges). These effects were taken into
account by Tinsley et al. (2000), who studied the effects
of charges on the efficiency of collisions between drop-
lets and aerosol particles under the assumption that
charged aerosol particles are formed from evaporating
charged droplets at the cloud tops. The authors took into
account image charge forces that have been shown to
produce a drastic increase in the collision efficiency as
compared to that for neutral particles. Collisions were

accelerated even in cases in which droplets and aerosol
particles were charged with charges of the same polarity.
They found that even for nonthunderstorm clouds elec-
trical effects considerably increase the scavenging rate
of charged aerosol particles of 0.1–1.0-mm radii. The
authors call this process ‘‘electroscavenging.’’

Returning to the problem of the artificial increase of
the collision efficiency between droplets with the pur-
poses of rain enhancement and fog elimination, we
would like to note that it is supposedly not a difficult
technical problem as regards charging droplets of clouds
and fog with the values that are much higher than those
usually observed in natural clouds, and to use these
charged droplets as seeding particles. We show that
seeding with charged droplets may be a very efficient
tool for rain enhancement and fog elimination purposes.

In this paper we consider some theoretical aspects of
cloud (and fog) seeding with charged droplets. In section
2 we present and discuss the values of electrostatic forc-
es between charged (as well as charged and neutral)
droplets. Section 3 is dedicated to the calculation of
collision efficiencies between both charged and neutral
droplets. Section 4 describes a novel model solving the
stochastic coalescence equation in the case that colliding
droplets are characterized both by their mass (as in the
classical approach) and by their charge. The results of
the simulation of droplet spectrum evolution in clouds
and the simulation of visibility in fog under natural and
seed conditions are presented in section 5. We sum-
marize the results in section 6. In appendix A we present
the approximate solution of the electrostatic force aris-
ing between the two charged cloud droplets, and in ap-
pendix B we discuss the characteristic time of electro-
static leakage of cloud droplet charge.

2. Electrostatic interaction between two drops
Usually cloud droplets are formed on aerosol particles

containing a certain soluble fraction. It means that drop-
lets contain a sufficient number of ions to be regarded
as conductive particles.

Previous calculations of electroscavenging (see, e.g.,
Tinsley et al. 2000, 2001) are related to the electrostatic
interaction between a charged aerosol particle (the point
charge is located at the particle center) and a droplet
charge (charged conductive sphere) (see appendix A).
We generalize this approach for the case of two con-
ductive insulated spheres, taking into account the elec-
trostatic interaction between them. This problem has
been solved using a general approach of potential and
capacitance coefficients corresponding to these spheres
(Smythe 1950; Batygin and Toptygin 1978). However,
the final formula, which describes the electrostatic force,
is represented through the nonlinear combination of the
infinite series. It is too complex to be used for numerical
modeling. Thus, in appendix A we present an approx-
imated solution of this problem using the method of
electrical images. The electrostatic forces of droplet in-
teraction can be represented by the following formula:
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FIG. 1. Electrostatic forces as a function of normalized distance
2R/(r1 1 r2) for different pairs of charges Q1 and Q2 according to
formula (1): r1 5 10 mm, and r2 5 5 mm.

where Q1 and Q2 are charges of two conductive insulated
spheres, r1 and r2 are the radii of these spheres, R is the
distance between the spheres’ centers, and «0 5 8.854
3 10212 F m21 is the dielectric permittivity of free space.
The geometry of droplet interaction and corresponding
notations are presented in appendix A (Fig. A3). The
first term on the right-hand side of (1) represents the
Coulomb force (it decreases with distance as R2), and
the next two terms represent interaction between point
charges and the dipole (force decreases as R3). The last
term describes interaction between induced imaginary
charges (this force decreases as R4).

The accuracy of approximation (1) depends on many
parameters, for example, charges of the droplets and
their radii. However, it is high enough to use this ap-
proximation in the study. In more detail, this problem
is discussed in appendix A.

Figure 1 shows the dependencies of the electrostatic
force between charged droplets of radii r1 5 10 mm and
r2 5 5 mm on the distance between the droplets cal-
culated using (1). One can see that the maximum at-
traction force is obtained when droplets are loaded with
charges of the opposite polarity (dotted line in the fig-
ure). At the same time, the attraction force between
neutral and charged droplets turns out to be significant
also (the dash line).

As follows from solution (1), two droplets can attract

each other even in the case when they are loaded with
charges of the same polarity. This fact can be explained
by the effect of imaginary charges. The effect erases at
short separation distances (about the sum of the droplet
radii) in cases that the droplets’ radii (or the magnitudes
of droplets’ charges) are significantly different. In these
cases the attraction force arising between the charge of
a droplet and the imaginary charges induced in the coun-
terpart droplet dominates over the Coulomb force’s re-
pulsion between the droplets. At the same time, for long
separation distances (much bigger than the sum of drop-
let radii) the Coulomb force always dominates (see the
dash–dotted line in Fig. 1). In case the particles are
loaded by significant charges of the same polarity, re-
pulsion dominates at all separation distances (solid line
in Fig. 1).

Theoretically, an insulated particle in the vacuum can
be loaded with a charge of an arbitrary large magnitude.
However, a cloud droplet situated in the air cannot be
charged more than a certain maximum value Qmax, which
is determined by the air breakdown voltage for the co-
rona discharge Ub ; 3 3 106 V m21 (Meek and Craggs
1953). In appendix B the magnitude of this maximum
charge qmax as a quadratic function of the droplet radius
was obtained (see Fig. 2). For example, a droplet with
radius 1 mm has qmax 5 3.3 3 10216 C and a droplet
with radius 10 mm has qmax 5 3.3 3 10214 C.

The corona discharge is not the only process that
results in a decrease in the droplet change. Even in the
case Q , qmax, the charge of a droplet sinks due to the
conductivity of air provided by the mobility of free
ions in the air. In this case a charged droplet slowly
loses its charge according to the exponential law Q 5
Q 0 exp(2t/t), where t 5 «0/s is the relaxation time,
s is the conductivity of air, and Q0 is the initial charge
of a droplet (Pruppacher and Klett 1997, p. 794). The
fair weather sea level conductivity estimated was s ø
2.3 3 10214 S m21, which gives the value of t ø 6.5
min. However, the conductivity inside a cloud is sig-
nificantly lower than the fair weather sea level conduc-
tivity, because the concentration of free ions inside a
cloud is significantly lower than that in the cloud-free
air. Pruppacher and Klett (1997, p. 802) estimate the
conductivity inside a cloud in the interval from 1/40 up
to 1/3 of the fair weather sea level conductivity, which
leads to values of relaxation time t from 20 min up to
4 h. Similar estimations of t are presented by Tinsley
et al. (2000). It means that the time period of the droplet
discharge is much longer than the time scale of the
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FIG. 2. Maximum charge that a drop can be loaded as a function
of drop radius.

coagulation processes leading to raindrop formation,
which are typically about 10 min for cumulus clouds.
Thus, our simulation of the coagulation process will be
conducted under the assumption of charge conservation.

3. Calculation of the collision efficiencies

The rate of drop collisions is determined by the col-
lision efficiency defined as the ratio of the collision cross
section Sc to the geometrical cross section Sg 5 p(r1 1
r2)2 (Fig. 3). In the case of pure gravity collisions, the
collision efficiency between small cloud droplets is usu-
ally much lower than unity (Pinsky et al. 2001). In the
case in which the drop collector is charged, the collision
cross section increases significantly, so that the collision
efficiency can easily exceed unity (right-hand side Fig.
3).

Calculation of the collision efficiencies is a compli-
cated problem of the hydrodynamic interaction between
two drops moving in an airflow. In our work we use
the superposition method (Pruppacher and Klett 1997).
This method assumes that each drop moves in a flow
field induced by its counterpart moving alone. Dating
back to Langmuir (1948), this method has been suc-
cessfully used by many investigators (e.g., Shafrir and
Gal-Chen 1971; Lin and Lee 1975; Schlamp et al. 1976;
Pinsky et al. 2001) in a wide range of droplet Reynolds
numbers. It is known that the precision of the super-
position method decreases in cases where colliding
droplets are of a similar size and the time of the hy-
drodynamic interaction increases (see, e.g., Pinsky et al.
1999). Note that, because the electric forces tend to
increase the attraction between charged and neutral
droplets, the time of interaction in the charge calcula-
tions is less than that in the case of neutral droplet
collisions. We believe, therefore, that in cases in which

the method works for collisions of neutral droplets, it
also has to work well in charge calculations.

According to the superposition method, the equation of
motion (in a stagnant frame) of drop 1 during its hydro-
dynamic interaction with drop 2 can be written as

dV 11 5 2 (V 2 V e 2 u ) and (2)1 1t z 2dt t 1

dx1 5 V , (3)1dt

where x1 is the vector of the drop 1 coordinate, V1 is
the velocity of drop 1, V1t is the terminal velocity of
drop 1 in calm air, ez is the unit vector directed down-
ward, t1 5 V1t/g is the characteristic relaxation time of
drop 1, which is the measure of the inertia, and g 5 9.8
m s22 is the acceleration of gravity. In the present study
we will conduct our simulations for small drops (r #
20 mm) with small Reynolds numbers (Re # 0.1). For
such Stokesian droplets

2 rw 2t 5 r , (4)1 19 h

where r1 is the radius of drop 1, rw 5 1000 kg m23 is
water density, and h 5 1.8 3 1025 kg m s21 is dynamic
air viscosity. In (2) V1tez/t1 is the acceleration of drop
1 induced by gravity, and u2 is the perturbed velocity
induced by drop 2 at the location of the drop 1 center,
and so u2/t1 is the acceleration of drop 1 caused by the
perturbations of air velocity induced by drop 2.

According to the superposition method, the perturbed
velocity fields induced by drops are calculated under
the assumption that the droplets move independently.
For each drop, the value and direction of the induced
velocity are determined by the current relative drop ve-
locity with respect to air. The components of velocity
u2 depend on the drop–air relative velocity of drop 2,
U2, the separation distance R between the droplets, and
the radius of drop 2. That is,

u 5 u (U , R, r ),2 2 2 2 (5)

where

U 5 V 2 u .2 2 1 (6)

For small Reynolds numbers the flow induced by
moving spheres obeys the Stokes solution (Kim and
Karrila 1991, p. 90) with the radial u2r and normal u2a

components of velocity represented in the spherical co-
ordinate frame connected with drop 2 as

33 r 1 r2 2u 5 |U | cosa 2 and2r 2 2 1 2[ ]2 R 2 R

33 r 1 r2 2u 5 2|U | sina 2 , (7)2a 2 2 1 2[ ]4 R 4 R

where a2 is the angle between the drop–air relative ve-
locity of drop 2 and the straight line connecting the
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FIG. 3. Scheme of hydrodynamic droplet interaction and collisions in the cases of (left) neutral
droplets and (right) charged drop collector. In the case of neutral droplet collisions, the collision
cross section Sc is less than the geometrical cross section Sg (the collision efficiency E 5 So/Sg

, 1). In the case in which the drop collector is charged, E 5 So/Sg . 1.

centers of interacting drops. The induced velocity tends
to be zero, with an increase of the separation distance
between droplets; so, if R → ` then u2r → 0 and u2a

→ 0.
Equations of motion for drop 2 are analogous and

can be obtained from (2)–(7), replacing index 1 by 2.
In the case of charged droplets, the electrostatic force

Fel should be added to the droplet motion (2),

dV 1 F1 el5 2 (V 2 V e 2 u ) 1 ,1 1t z 2dt t m1 1

dx1 5 V ,1dt

dV 1 F2 el5 2 (V 2 V e 2 u ) 2 , and2 2t z 1dt t m2 2

dx2 5 V , (8)2dt

where m1 and m2 are the masses of droplets. It should
be noted that the magnitude of the electrostatic force in
(8) is determined by expression (1), while the direction
of this force is parallel to the line connecting the drop
centers. In the first line in (8), Fel is opposite to the force
in the third line of these equations because of the third
Newtonian law.

To illustrate a comparable role of the electrostatic
forces (represented by the term Fel/m1) and the hydro-

dynamic forces during the hydrodynamic interaction
[represented by the term (2u2/t1)] of charged and neu-
tral droplets, the radial component of the difference be-
tween these forces was calculated as the function of the
distance between surfaces of the 10-mm-radius charged
droplet and 5-mm-radius neutral droplet (Fig. 4). The
charge of the 10-mm-radius droplet varied from 5% to
100% of the maximum value. For the sake of conve-
nience, the comparison with the case of interaction of
neutral droplets is presented as well. The initial location
of the droplets is chosen in such a way that in case the
droplets are neutral, no collision takes place. In the fig-
ure, the forces are normalized by the weight of the 5-
mm-radius droplets. One can see that at larger distances
the repulsion force (positive values) caused by the drop-
let hydrodynamic interaction dominates. It means that
the hydrodynamic interaction force exceeds the electro-
static force. In the case in which the droplets are neutral,
the repulsion force prevents the droplet collision. In the
figure it can be seen by the existence of the minimal
distance between the droplet surfaces (of about 1.7 mm).
If the 10-mm-radius drop is loaded even by a small
charge, the droplet interaction changes dramatically; at
smaller distances (whose magnitude depends on the
droplet charge) the attraction force dominates and can
exceed the force of hydrodynamic interaction (as well
as the gravity force) by 1000 and more times. So, when
droplets are approaching at distances so small that the
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FIG. 4. The radial forces affecting the motion of 10-mm-radius and
5-mm-radius droplets during their approaching. The forces are cal-
culated for different charges of the 10-mm-radius droplet. The mag-
nitude of the forces is normalized by the weight of the 5-mm-radius
droplet. Positive values of the forces foster the drop repulsion; the
negative forces foster the droplet attraction. The electrostatic attrac-
tion force dominates over the hydrodynamic repulsion force within
a wide range of droplet separation distances.

FIG. 5. (a) Collision efficiencies between a charged 10-mm-radius
droplet and neutral cloud droplets with radii ranged from 1 to 20 mm.
The charge of the 10-mm-radius drop varies from zero to the max-
imum possible value. (b) The same as in (a), but for a charged 20-
mm-radius droplet.

huge attraction force fully determines the droplet be-
havior, one can expect the droplet collision.

Equation (8) was used for collision efficiency cal-
culations. For this purpose, we used a procedure similar
to that developed by Pinsky et al. (1999, 2001). Initially,
interacting droplets were located at large separation dis-
tances (30 radii of the largest droplet in a drop pair).
At this distance the velocity fields u1 and u2 as well as
the electrical forces Fel were equal to zero; hence, drop
velocities were equal to terminal velocities. By varying
the initial location of the smaller droplet in the direction
perpendicular to the direction of gravity force, the graz-
ing trajectories and the effective collision cross section
Sc were determined (see Fig. 3). The equation system
(8) was solved using the fifth-order Runge–Kutta meth-
od, with automatic precision control and automatic
choice of the integration time step (Press et al. 1992).

Using this procedure, a four-dimensional (with re-
spect to droplet sizes and charges) table of the collision
efficiency has been calculated. The collision efficiencies
calculated are the result of the contribution of two forc-
es: the electrostatic force and gravity. As a result, the
collision efficiency can be either larger or smaller than
the pure gravity value. Note, however, that in the ma-
jority of cases the electrostatic forces lead to a dramatic
increase in the collision efficiency values. It means that
the total effect must be a crucial increase in the collision
rate in a droplet population containing charged droplets.

Figures 5a and 5b present the collision efficiencies
between charged drops of the 10- and 20-mm radii, re-
spectively, and neutral cloud droplets with radii ranged
from 1 to 20 mm. Figure 6 shows the collision effi-
ciencies between drops of different radii charged with

their maximum possible charge and neutral droplets.
Figure 7 presents the collision efficiencies between
droplets charged with the maximum possible charge
(droplet radii of these droplets are plotted along the y
axis) and the droplets charged with the charge of the
opposite polarity and equal to 5% of the maximum val-
ue. The collision efficiencies highly depend on droplet
charge and size. In the case of charge-neutral droplet
collisions, the collision efficiencies may reach 20–30;
that is, the values are several hundred times the gravity-
induced values. In the case in which droplets are charged
by opposite polarities (Fig. 7), the collision efficiencies
may reach a few thousand, that is, ;104 times the grav-
ity-induced values. We see that in cases in which droplet
charges are not negligibly small, the attraction forces
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FIG. 6. Collision efficiencies between drops of different radii
charged with their maximum possible charge (the x axis) and neutral
droplets (the y axis).

FIG. 7. Collision efficiencies between droplets charged with the
maximum possible charge (the y axis) and the droplets charged with
the charge of the opposite polarity and equal to 5% of the maximum
value (the x axis).

significantly exceed the forces of the hydrodynamic in-
teraction at small separation distances. So, when drop-
lets approach at such small distances, where attraction
force fully determines the droplet behavior, one can ex-
pect droplet collision.

It means that charged drop collectors can collect drop-
lets within a volume with the cross section Sc, which
significantly exceeds the geometrical cross section Sg.
Note that in our calculations below we do not take into
account collisions between droplets of the same size.
At the same time such collisions can take place in the
cases that droplets are charged. Therefore, we suppose
that the values of the collision rate obtained in the cal-
culations presented are somewhat underestimated.

4. Modeling of stochastic collisions

Numerical modeling of clouds requires simulation of
various processes such as cloud droplet nucleation, their
diffusion growth, and the evolution of a raindrop spec-
trum. One of the most important mechanisms of rain-
drop formation is the collision of cloud droplets. The
process of the droplet spectrum formation by drop–drop
collisions is described by a well-known stochastic col-
lision equation (SCE) (Pruppacher and Klett 1997):

m /2] f (m, t)
5 f (m , t)K(m , m9) f (m9, t) dm9E c c]t 0

`

2 f (m, t)K(m, m9) f (m9, t) dm9, (9)E
0

where f (m, t) is the DSD at time t and K(mc, m9) is the
collection kernel describing the rate at which a drop of
mass mc 5 m 2 m9 is collected by a drop of mass m9,
forming further a drop of mass m. The first integral on
the right-hand side of (9) (the so-called gain) describes
the gain of drops of mass m by collision and coalescence

of two smaller drops, while the second integral (loss
integral) denotes the loss of drops with mass m due to
collisions with other drops of any size.

Many different methods have been developed for the
numerical solution of the SCE (Kovetz and Olund 1969;
Bleck 1970; Berry and Reinhardt 1974; Tzivion et al.
1987; Seeßelberg et al. 1996; Bott 1998; Khain et al.
2000). In our case the problem of droplet collisions is
more complicated than the problem of the purely grav-
itational collisions, because now the collection kernel
must depend on droplet charges. The distribution func-
tion for water droplets becomes two-dimensional: in
each mass category there are droplets with different
charges. Thus, an additional grid corresponding to drop-
let charges was introduced. As a result, we have intro-
duced a logarithmically equidistant two-dimensional
mass charge grid. This grid contains 1000 mass bins
describing droplet size distribution with droplet radii
ranging from 1 up to 2000 mm, and 35 charge bins with
charges ranging from 22 3 10213 up to 2 3 10213 C.
When calculating the collisions, we take into account
the maximum charge constraint (see Fig. 2 and appendix
B).

Within the mass grid two ranges of droplet sizes were
considered: droplets with radii equal to or below 21 mm
and droplets with radii exceeding 21 mm. Numerical
evaluations show that if originally charged droplets are
comparatively small (say below 15 mm), the effect of
a droplet charge on collisions significantly decreases
when the radius of the larger droplet in the pair exceeds
21 mm (as a result of collisions). Thus, for such droplets
we neglect the electrostatic effects. This assumption,
most probably, leads to some underestimation of the
collision rate.

In our model we considered three different types of
collisions for two droplets. The first: the radii of both
colliding droplets are less than 21 mm, and the radius
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FIG. 8. Scheme of remapping of drop mass and charges on regular mass and charge grids in the case of collisions of charged droplets.

of the droplet created after collision is below 21 mm.
In this case both the gain integral and the loss integral
are calculated using the entire two-dimensional size
charge distribution. The second: the radii of colliding
droplets are below 21 mm, but the droplet obtained as
a result of collision is larger than 21 mm. In this case
the loss integral is calculated using the entire two-di-
mensional size charge distribution, while the gain in-
tegral is obtained with reduced one-dimensional DSD
depending only on droplet masses. The third: at least
one droplet in the colliding pair exceeds 21 mm. In this
case both the gain and the loss integrals are calculated
using the reduced one-dimensional DSD. This approach
also leads to some underestimation of the collision rate.

Because the masses (and charges) of the droplets
formed by collisions do not coincide with the nodes of
the regular grid, a remapping of created droplets into
the regular mass and charge meshes is required. The
procedure of remapping consists of two steps: remap-
ping of the mass and remapping of charges.

To illustrate the remapping procedure employed, let
us consider collisions between the droplets of two cat-
egories: a bin of droplets with mass mi and charge qj

and a bin of droplets with mass mn and charge ql (Fig.
8). As a result the collisions between these droplets with
mass m* 5 mi 1 mn are created, and the corresponding

bins lose the mass M and charge Q. If the mass of the
resulting drops is located between two categories of a
regular mass grid mk # m* # mk11, the total mass of
these droplets is initially added to the kth category. At
the first step, according to the procedure proposed by
Bott (1998), a certain fraction of mass M is transported
from category k to category k 1 1. As a result, we
obtain the additional masses Mk and Mk11, which are
added to kth and (k 1 1)th categories. The additional
droplet concentrations Nk and Nk11,

M Mk k11N 5 and N 5 , (10)k k11m mk k11

are also added to categories k and k 1 1.
The second step is the redistribution of charge Q.

Initially one must redistribute charge Q between the kth
and (k 1 1) mass categories. We assumed that the dis-
tribution of charges between these categories is pro-
portional to the distribution of masses Mk and Mk11,

M Mk k11Q 5 Q and Q 5 Q, (11)k k11M 1 M M 1 Mk k11 k k11

which provides charge conservation. Then, we must re-
distribute the charges Qk and Qk11, added to kth and (k
1 1)th mass categories, onto the charge grid within the
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FIG. 9. Continental-type droplet mass distributions at t 5 0, t 5
300, and t 5 600 in cases (a) of noncharged cloud drops and (b) in
which 5% of the droplets are charged.

mass categories. Let us introduce averaged charges of
single droplets Qk/Nk and Qk11/Nk11 related to the kth
and (k 1 1)th mass categories. These averaged charges
must correspond to certain cells of the charge grid de-
fined by the inequalities (see Fig. 8)

Q Qk k11q # , q and q # , q . (12)g g11 h h11N Nk k11

To redistribute these averaged charges between the cat-
egories of the regular charge grid two conservation con-
ditions must be satisfied: the charge conservation con-
dition and the concentration conservation condition. The
charge conservation gives

Q 5 N q 1 N q andk k,g g k,g11 g11

Q 5 N q 1 N q , (13)k11 k11,h h k11,h11 h11

where Nk,g, Nk,g11, Nk11,h, and Nk11,h11 are concentrations
to be added to the bins corresponding to the regular grid
charges qg, qg11, qh, and qh11, respectively. The con-
centration conservation gives

N 1 N 5 N andk,g k,g11 k

N 1 N 5 N . (14)k11,h k11,h11 k11

Then, from (13) and (14) one can finally obtain

Q 2 N qk k g11N 5 2 ,k,g q 2 qg11 g

Q 2 N qk k gN 5 , (15)k,g11 q 2 qg11 g

Q 2 N qk11 k11 h11N 5 2 , andk11,h q 2 qh11 h

Q 2 N qk11 k11 hN 5 . (16)k11,h11 q 2 qh11 h

Thus, as a result of the remapping, droplets were
redistributed into four categories numerated by four
pairs of indices (k, g), (k, g 1 1), (k 1 1, h), and (k 1
1, h 1 1), where the first index numerates the mass
category and the last index numerates the charge cat-
egory. This remapping procedure provides conservation
of the mass and charge, including the charge polarity.
It is also worth noting here that the indices of the charge
categories g and h, in contrast to the indices of the mass
categories k and k 1 1, are not necessarily neighboring
numbers. The reason of this fact is the following: the
steps of the mass and charges grids are quite arbitrary,
which leads to inequalities (12).

It is important to note here that the remapping pro-
cedure provides charge conservation, but the total rel-
evant charge of the system may be inconstant due to
two reasons. The first reason is that the charge of drop-
lets obtained as the result of remapping may exceed the
value of the maximum possible charge for a droplet of
such size. In this situation we assume that the exceeding

charge is lost due to the corona discharge and the re-
duction of the charge of such droplets to the maximum
value qmax (see appendix B). The second reason is our
assumption that the electrostatic forces are negligible
for droplets with the radii exceeding 21 mm. The elec-
trical charge of these droplets is also assumed to be lost.

5. Results of seeding simulations

a. Cloud seeding modeling

We employed the procedure described above to in-
vestigate the impact of a droplet charge on the coagu-
lation process in clouds. For this purpose we used the
droplet mass distribution corresponding to an initially
narrow DSD centered at r 5 9 mm (see the filled-circles
curve in Fig. 9) with the total cloud water content of 3
g m23 and droplet concentration of 1100 cm23. This
spectrum is similar to that observed in deep continental
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FIG. 10. (a) Time dependence of cloud drops concentration: non-
charged cloud (crosses), and for cloud population in which 5% of
droplets are charged with maximum charge (open circles). (b) The
same as in (a) but for the effective drop radius.

FIG. 11. Time dependence of relative rainwater content for different
fraction of negatively and positively charged droplets in droplet pop-
ulation: 5% of charged droplets with positive polarity (dash–dotted
curve), 4% of positively charged droplets and 1% of negatively
charged droplets (dotted curve), 3% of positively charged droplets
and 2% negatively charged droplets (dashed curve), and all droplets
are neutral (solid line).

clouds by Rosenfeld and Woodley (2000) in smoky air.
The observations and numerical simulations provided
by Khain et al. (2001) show that such clouds do not
precipitate.

In Fig. 9 one may compare the evolution of the drop-
lets’ mass distribution for the neutral (natural) droplets
(Fig. 9a) and the evolution of droplets’ mass distribution
for the case in which 5% of droplets in the initial DSD
were charged up to the maximum possible charge qmax

(see Fig. 2 and appendix B) (Fig. 9b). We also assumed
that because of turbulent mixing, all charged droplets
are distributed homogeneously within a certain cloud
volume, where collisions are simulated. These figures
show a crucial influence of droplet charges on the co-
agulation process. For the charged DSD after 5 min of
evolution the droplet mass distribution demonstrates a
pronounced tail corresponding to small 50–100-mm

raindrops (curve with open circles), which 5 min later
develop into 1-mm-radius mature raindrops (curve
marked by stars). On the contrary, the neutral DSD in
Fig. 9a practically does not develop over the same time
period.

Figures 10a and 10b present time dependence of the
droplet concentration and the effective radius, respec-
tively. One can see that collisions in a natural cloud are
not efficient; hence, droplet concentration and the ef-
fective radius do not change with time. By contrast, in
the case of ‘‘seeding’’ by charged droplets, the concen-
tration of droplets decreases and the effective radius
increases drastically during the first 6–7 min of the col-
lision process. The effective radius exceeds 15 mm in
the 4 min after seeding. As is known from observations
(Rosenfeld and Gutman 1994) and from numerical sim-
ulations (Pinsky and Khain 2002), precipitation starts
when the effective radius exceeds 15 mm.

To investigate the sensitivity of the coagulation pro-
cess to the magnitude and polarity of seeding charges,
four numerical experiments were conducted (see Fig.
11) in which (a) 5% of charged droplets were assumed
to be charged with positive polarity and the rest of the
droplets were assumed to be neutral, (b) 4% of posi-
tively charged droplets and 1% of negatively charged
droplets were assumed, (c) 3% of positively charged
droplets and 2% negatively charged droplets were as-
sumed, and (d) all droplets were assumed to be neutral.

The results presented in Fig. 11 (dash–dotted line)
show that in the case of 5% of charged droplets almost
all cloud water content converted into the rain. This
finding is drastically different from the situation of nat-
ural (neutral) DSD, which does not lead to the precip-
itation at all (Rosenfeld and Woodley 2000).

The results presented in Fig. 11 also show that a
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FIG. 12. Time dependencies of the relative rainwater content in the
maritime-type droplet mass spectra in cases in which (a) 5% of the
droplets were initially charged by their maximal charges and (b) all
droplets are neutral.

FIG. 13. Droplet size distribution in charged and noncharged fog:
t 5 0 (open circles), 30% fraction of droplets is charged and t 5
1800 s (filled circles), and neutral fog, t 5 1800 s (stars).

unipolar-charged cloud develops faster and precipitates
more effectively than a bipolar one. This fact could be
explained by the effect of charge compensation. In the
case of the bipolar charge, the intensive collisions at the
initial stages of coagulation lead to a rapid decrease in
the net cloud charge and, consequently, to a decrease
in the net effect of the charge on the coagulation. Uni-
polar charges do not disappear by collisions, and their
effect continues during the whole coagulation time.

To verify the ability of the charged droplets to ac-
celerate the raindrop formation in the case of a maritime-
type droplet spectrum, we performed an additional sim-
ulation, in which 5% of droplets of a maritime-type
droplet spectrum centered at ;14 mm (with droplet con-
centration of ;290 cm23 and cloud water content of 2.9
g m23) were charged with their maximum possible
charges. Figure 12 shows time dependencies of the rel-
ative rainwater content in cases in which 5% of the
droplets of the maritime DSD are initially charged, as
well as for the case of natural DSD development. One
can see that the all cloud water converts into rainwater
in 6–7 min, that is, even faster than in the case of the
continental spectrum. The formation of raindrops under
natural conditions begins in ;10 min.

b. Simulations of fog seeding

The problem of fog elimination is actually the prob-
lem of increase the visibility (VIS) in fog. The quan-
titative measure of the visibility is related to the ex-
tinction coefficient b by the well-known formula (Zuev
1974)

ln«
VIS 5 2 , (17)

b

where « is the threshold of contrast, normally equal to

0.02 (Kunkel 1984). If the DSD is known then, assum-
ing a spherical droplet shape, one can estimate the ex-
tinction coefficient b as follows:

`

2b 5 pr K(r) f (r) dr, whereE
0

28n sin[2r(n 2 1)]
K(r) 5 2 2 ,

2r(n 1 1) (n 2 1)

2pr
r 5 , (18)

l

r is the radius of a droplet, f (r) is the DSD function
for fog, n 5 1.33 is the refractive index of water, and
l is the wavelength of scattered light (Zuev 1974). In
our calculations of the charged seeding effect of the
visibility in fogs we used l 5 500 nm (green light)
because this wavelength corresponds to the center of
the visible spectrum.

Initially the DSD for fog simulation was chosen to
be similar to the DSD of natural fog measured by Roach
et al. (1976) (open circles in Fig. 13). This DSD is
typical of a fog with the total liquid water content of
0.2 g m23 and droplet concentration of 1400 cm23. Fig-
ure 13 shows the development of the DSD in a natural
fog with neutral droplets (the curve marked by stars in
Fig. 13) and a fog in which 30% of the droplets were
charged positively and another 30% of the droplets were
charged negatively (the curve marked by filled circles
in Fig. 13). One can see a significant decrease in the
concentration of droplets within the 5–10-mm size range
after the 30 min of fog development in the case in which
the initial DSD contains a fraction of charged droplets
mentioned. On the contrary, in the case of natural (neu-
tral) fog the droplet concentration in the 5–10-mm-radii
range practically does not change with time. This de-
crease in the concentration of 5–10-mm droplets leads
to a significant increase in visibility as presented in Fig.
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FIG. 14. Time evolution of the visibility in a typical fog for different
concentrations of positive and negative charges: (a) neutral, (b) 30%
positive, 30% negative, and (c) 50% positive, 50% negative. Framed
figure shows the beginning stage of the fog evolution and charge
elimination.

FIG. 15. Time evolution of the fog visibility for different fraction
of positively charged droplets: (a) 10%, (b) 30%, and (c) 60%.

FIG. 16. Visibility (at t 5 30 min) as a function of unipolar charge
concentration.

14. Curves a, b, and c show time dependencies of vis-
ibility for the fog with the DSD presented in Fig. 13,
that is, when all droplets were neutral, when 30% of
droplets were charged positively and another 30% of
droplets were charged negatively, and when 50% of the
droplets were charged positively and 50% of the drop-
lets were charged negatively, respectively. Whereas no
change in visibility of the neutral fog takes place, a
significant increase in visibility of fog with charged
droplets can be seen during 30 min.

In Fig. 14 one can see three stages of fog development
for the case of bipolar charging. At the first stage within
the first 10 s of fog evolution fast collisions of oppositely
charged droplets lead to increase in visibility from 35
up to 40 m (see upper framed figure in Fig. 14) and net
charge decrease as presented in the lower framed pic-
ture. These collisions shift the fog DSD toward to the
region of larger droplets. Then, at the second stage of
about 20-min duration, the evolution of fog is mainly
governed by gravity-induced collisions (because the
charge concentration decreases by one order of mag-
nitude at the first stage). During the second stage vis-
ibility grows slowly. However, gravity collisions lead
to the creation of some amount of large droplets, which
later trigger the fast collision process evident at the third
stage (after 20 min) of fog evolution.

To investigate the development of unipolar-charged
fog, we conducted numerical simulations with 10%,
30%, and 60% of the charged droplets. The increase in
visibility in these simulations is presented in Fig. 15 by
curves a, b, and c, respectively. A unipolar-charged fog
does not reveal these three stages of development, which
are found in the case of bipolar-charged fog. This can
be attributed to the absence of charged compensation.
Thus, in contrast to the bipolar-charged fog, the elec-
trostatic effects are important over the whole period of

the fog evolution. Nevertheless, in the case of a uni-
polar-charged fog, elimination is not as efficient as in
the case of bipolar charging (cf. Figs. 14 and 15).

The dependence of visibility (at t 5 30 min) as a
function of the fraction of droplets with a unipolar
charge is presented in Fig. 16. One can see that there
exists an optimum fraction of droplets with a unipolar
charge, when visibility increases faster than for all other
concentrations of charged droplets. The existence of this
optimum could be explained by a simple physical rea-
son. In a natural fog, when all droplets are neutral, grav-
ity-induced collisions are inefficient and do not lead to
the DSD development and fog elimination. In a totally
charged fog (100% of charged droplets) even the grav-
itational collisions are drastically suppressed by the
Coulomb force repulsion. Thus, between these two in-
effective situations should be an optimum, which for
the DSD used in our simulation occurs at 10% of uni-
polar-charged droplets in fog (see Fig. 16).

The last numerical experiment presented here is seed-
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FIG. 17. Time evolution of visibility in a dense fog for different
fractions of positively and negatively charged droplets: (a) 50% pos-
itive, 50% negative, (b) 30% positive, 30% negative, and (c) 10%
positive, 10% negative. Framed figure shows the beginning stage of
the fog evolution.

ing of a dense fog by the bipolar-charged droplets. For
this purpose we used the DSD similar to that in the
previous experiments (results are plotted in Fig. 14), but
with doubled droplet concentration. This fog can be
considered as quite dense, which is of special danger
for aviation and vehicular traffic. The time dependencies
of visibility for these experiments are presented in Fig.
17. One can see a paradoxical effect, namely, the dense
fog, having initially a smaller visibility as compared
with the less dense fog in Fig. 14, is eliminated faster
and in 15 min visibility becomes larger than in the case
of the less dense fog. This result could be attributed to
the fact that the active coagulation stage in a dense fog
in the presence of charged droplets starts earlier and
runs more efficiently than in a less dense fog.

Concluding the discussion of the fog elimination pro-
cess, we note that no droplets sedimentation was taken
into account in the simulations. This assumption, to-
gether with the underestimation of the collision effi-
ciencies mentioned earlier, leads to an underestimation
of the fog elimination rate.

6. Conclusions

A new method of droplet collision acceleration with
the purposes of rain enhancement and fog elimination
is proposed. According to the method some fraction of
droplets is charged and injected into clouds. It is clear
that clouds and especially fogs can be seeded by charged
droplets produced by droplet generators as well. To sim-
ulate the evolution of a droplet spectrum, a novel model
(taking into account the electrostatic droplet interaction
effects) was developed. To elaborate this model, an ap-
proximate expression for the electrostatic force has been
derived. This expression was used to calculate a table
of collision efficiencies for different radii and charges

of colliding droplets. The table was implemented into
the coagulation model using a two-dimensional mass
charge grid.

It was found that the collision efficiency between
charged and neutral droplets, as well as between droplets
containing charges of opposite polarity, is many orders
higher than in cases of the corresponding gravity-in-
duced collisions. Thus, efficient collisions take place
between cloud droplets. This significantly increases the
rate of raindrop formation and decreases the concentra-
tion of small droplets (responsible for low visibility in
fogs).

The results of numerical experiments show the effi-
ciency of rain enhancement by seeding with charged
droplets. A striking result of numerical experiments is
the creation of precipitation in extreme continental Tex-
as-type clouds, which do not produce warm rain under
natural conditions. A significant acceleration of raindrop
formation was found also in the case of the maritime
droplet spectrum. This is the main result of the paper.
The seeding with unipolar-charged droplets was found
to be more efficient for rain enhancement.

It is shown also that seeding with charged droplets
fosters fog elimination. It was found that if small fog
droplets are charged, the bipolar droplet seeding is pref-
erable for this purpose. We suppose the existence of an
optimum size of droplets to be charged and injected in
fogs to provide the maximum rate of fog elimination.

Practical advantages of the proposed method are the
following:
1) There is very high efficiency of seeding with charged

droplets for the collision rate acceleration, leading
to raindrop formation in clouds and an increase in
the visibility in fogs.

2) There is no necessity for a special reagent material.
The ‘‘seeding’’ time with charged droplets taken
from clouds (and fog) is limited by the storage of
fuel in an airplane.

3) The method allows consideration of fog as a source
of freshwater.

4) Seeding by charged particles leads to no pollution
formation.

The results of presented numerical experiments
should be tested in laboratory and field experiments.
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APPENDIX A

Electrostatic Force between Charged Droplets
Coulomb’s law establishes that the force of interaction

arising between two charged point particles obeys the
law of reciprocal squares,
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FIG. A1. A scheme illustrating a short-range electrostatic inter-
action arising between a large uncharged insulated conducting particle
and a small point charge.

FIG. A2. A scheme illustrating an equivalent charge location for
two charged insulated droplets.

1 Q Q1 2F 5 , (A1)
24p« R0

where Q1 and Q2 are the particles’ charges, R is the
distance between their centers, and «0 5 8.854 3 10212

F m21 is the dielectric permittivity of free space (Ble-
aney and Bleaney 1993, p. 2). According to this law, F
, 0 (charges of different polarity) corresponds to at-
tractive interaction, while F . 0 signifies repulsion be-
tween the particles. Equation (A1) can approximate the
interaction between cloud droplets if they are situated
sufficiently far away from one another.

In the case in which one small charged droplet with
charge Q approaches a large uncharged insulated con-
ductive droplet, the interaction between these droplets
becomes more complicated because the charged droplet
induces some imaginary charges on the surface of the
large droplet. Because the large droplet is insulated, the
potential on its surface should be constant. There is only
one possible charge distribution that satisfies this con-
dition. Such a distribution can be represented by two
imaginary charges inside a large droplet: the first charge
Q(r/R) situated at the large droplet center and the second
charge 2Q(r/R) placed on the line connecting the cen-
ters of big and small droplets at the distance r2/R from
the big droplet center, where r is the radius of big droplet
(see Fig. A1). One can regard these two imaginary
charges as an apparent dipole induced in the big con-

ductive particle by the small point charge. Thus, the
electrostatic force arising between these two particles is
(Bleaney and Bleaney 1993)

2Q r Rr
F 5 2 , (A2)

3 2 2 2[ ]4p« R (R 2 r )0

which represents the interaction of the point charge cor-
responding to the small droplet and the induced dipole
moment of the large droplet.

If the large droplet has a nonzero charge Qb, then the
charge Q(r/R) at its center should be substituted by Qb

1 Q(r/R), and the resulting force is

2Q r Rr Q QbF 5 2 1 , (A3)
3 2 2 2 2[ ]4p« R (R 2 r ) 4p« R0 0

where the first term on right-hand side of (A3) once again
represents the interaction between charge Q and the in-
duced dipole moment, and the second term describes
Coulomb force’s interaction between the droplets.

In the case of interaction between two conductive in-
sulated charged droplets with charges Q1 and Q2 and radii
r1 and r2, respectively (Fig. A2), the approximated ex-
pression for the force of interaction can be derived. We
assume that for both droplets the approximated distribution
of induced charges is the same as in the case in which
the counterpart droplet is regarded as a point charge. Thus,
the charge Q1 induces imaginary charges 2Q1(r2/R) and
Q1(r2/R) inside the second droplet and vice versa. Then,
the approximated force of interaction between two charged
droplets can be represented as the sum of three parts: the
Coulomb force’s interaction between the droplets, the in-
teraction between droplet charges and the induced dipole
moments on counterpart droplets, and the interaction be-
tween the induced dipole moments:

Q Q 1 1 R 1 R1 2 2 2F 1 Q r 2 1 Q r 2el 5 1 2 2 12 3 2 2 2 2 2 2 25 [ ] [ ]4p« R 4p« R (R 2 r ) R (R 2 r )0 0 2 1

1 1 1 1
1 Q Q r r 1 2 2 .1 2 1 2 4 2 2 2 2 2 2 2 2 2 2 6[ ]R (R 2 r 2 r ) (R 2 r ) (R 2 r )1 2 1 2

(A4)
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FIG. A3. Comparison between the electrical forces caused by Cou-
lomb’s law (solid line) and the electrostatic interaction force Fel aris-
ing between two small cloud droplets of equal charge q1 5 q2 5
1(10217) C, but with slightly different radii r1 5 1 mm, r2 5 2.5 mm
(dash–dotted line). Dashed line denotes exact solution for the attrac-
tion force.

Equation (A4) provides the Coulomb limit when the
distance between the droplets R becomes much bigger
than the particles radii r1 and r2.

Figure A3 presents a comparison of electrostatic forc-
es calculated using the approximation expression (A4)
and the exact solution of the problem (Smythe 1950,
118–121) arising between two small cloud droplets of
equal charges q1 5 q2 5 1 3 10217 C, but with slightly
different radii r1 5 1 mm and r2 5 2.5 mm. The repulsion
force caused by Coulomb’s law is denote by a solid line,
while the total electrostatic interaction force Fel arising
between these droplets is denoted by a dash–dotted line.
A dashed line denotes the exact solution. Despite the
fact that (A4) is an approximate solution, it reproduces
fine effects, such as the attraction arising between drop-
lets charged with similar polarity at small separation
distances. One can see a good qualitative and even quan-
titative agreement of the exact and approximated so-
lutions at separation distances exceeding 4 mm. A tran-
sition to the Coulomb limit is seen with the increase in
the separation distance between droplets. One can see
that at small separation distances the approximate so-
lution (A4) tends to underestimate the attraction force.

APPENDIX B

The Maximum Charge of a Cloud Droplet

Theoretically, an insulated droplet in a vacuum can
be loaded with a charge of an arbitrary large magnitude.
However, a cloud droplet situated in the air cannot be
loaded with a charge exceeding a certain maximum val-
ue qmax, which is determined by the air breakdown volt-
age Ub ; 3 3 106 V m21 (Meek and Craggs 1953).

The voltage in the vicinity of a charged spherical par-
ticle is given by the well-known formula U 5 q/4p«0r2

(Bleaney and Bleaney 1993). The magnitude of the max-

imum possible charge of a cloud droplet can be eval-
uated by using the condition U 5 Ub, which gives

2q 5 4pU « r .max b 0 (B1)

If the charge of a cloud droplet is higher than qmax then
the voltage in the vicinity of this charged droplet surface
exceeds Ub value and a corona discharge immediately
appears. This fast process reduces the charge of the
droplet to the value qmax, at which the corona discharge
stops.

REFERENCES

Batygin, V. V., and I. N. Toptygin, 1978: Problems in Electrodynam-
ics. Academic Press, 574 pp.

Berry, E. X., and R. L. Reinhardt, 1974: An analysis of cloud droplet
growth by collection: Part I. Double distributions. J. Atmos. Sci.,
31, 1814–1824.

Bigg, E. K., 1997: An independent evaluation of a South African
hygroscopic cloud seeding experiment, 1991–1995. Atmos. Res.,
43, 111–127.

Bleaney, B. I., and B. Bleaney, 1993: Electricity and Magnetism, Vol.
1. Oxford University Press, 676 pp.

Bleck, R., 1970: A fast, approximative method for integrating the
stochastic coalescence equation. J. Geophys. Res., 75, 5165–
5171.

Bott, A., 1998: A flux method for the numerical solution of the sto-
chastic collection equation. J. Atmos. Sci., 55, 2284–2293.

Bruintjes, T. R., 1999: A review of cloud seeding experiments to
enhance precipitation and some new prospects. Bull. Amer. Me-
teor. Soc., 80, 805–820.

DuBard, J. L., J. R. McDonald, and L. E. Sparks, 1983: First mea-
surement of aerosol particle charging by free electrons—A pre-
liminary report. J. Aerosol Sci., 14, 5–10.

Grover, S. N., and K. V. Beard, 1975: A numerical determination of
the efficiency with which electrically charged cloud drops and
small raindrops collide with electrically charged spherical par-
ticles of various densities. J. Atmos. Sci., 32, 2156–2165.

Khain, A. P., M. Ovtchinnikov, M. Pinsky, A. Pokrovsky, and H.
Krugliak, 2000: Notes on the state-of-the-art numerical modeling
of cloud microphysics. Atmos. Res., 55, 159–224.

——, D. Rosenfeld, and A. Pokrovsky, 2001: Simulation of deep
convective clouds with sustained supercooled liquid water down
to 237.58C using a spectral microphysics model. Geophys. Res.
Lett., 28, doi:10.1029/2000GL012662.

Kim, S., and S. J. Karrila, 1991: Microhydrodynamics Principles and
Selected Applications. Butterworth-Heinmann, 507 pp.

Kovetz, A., and B. Olund, 1969: The effect of coalescence and con-
densation on rain formation in a cloud of finite vertical extent.
J. Atmos. Sci., 26, 1060–1065.

Kunkel, B. A., 1984: Parameterization of droplet terminal velocity
and extinction coefficient in fog models. J. Climate Appl. Me-
teor., 23, 34–41.

Langmuir, I., 1948: The production of rain by a chain reaction in
cumulus clouds at temperature above freezing. J. Meteor., 5,
175–192.

Lin, C. L., and S. C. Lee, 1975: Collision efficiency of water drops
in the atmosphere. J. Atmos. Sci., 32, 1412–1418.

Mather, G. K., M. J. Dixon, and J. M. de Jager, 1996: Assessing the
potential for rain augmentation—The Nelspruit randomized con-
vective cloud seeding experiment. J. Appl. Meteor., 35, 1465–
1482.

——, D. E. Terblanche, F. E. Steffens, and L. Fletcher, 1997: Results
of the South African cloud-seeding experiments using hygro-
scopic flares. J. Appl. Meteor., 36, 1433–1447.

Meek, J. M., and J. D. Craggs, 1953: Electrical Breakdown of Gases.
Clarendon Press, 507 pp.



OCTOBER 2004 1529K H A I N E T A L .

Pinsky, M., and A. P. Khain, 2002: Effects of in-cloud nucleation
and turbulence on droplet spectrum formation in cumulus clouds.
Quart. J. Roy. Meteor. Soc., 128, 1–33.

——, ——, and M. Shapiro, 1999: Collisions of small drops in a
turbulent flow. Part I: Collision efficiency. Problem formulation
and preliminary results. J. Atmos. Sci., 56, 2585–2600.

——, ——, and ——, 2001: Collision efficiency of drops in a wide
range of Reynolds numbers: Effects of pressure on spectrum
evolution. J. Atmos. Sci., 58, 742–764.

Press, W. H., S. A. Tenkolsky, W. T. Vetterling, and B. P. Flannery,
1992: Numerical Recipes in FORTRAN. Cambridge Press, 963
pp.

Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and
Precipitation. Kluwer Academic Publishers, 954 pp.

Reisin, T., S. Tzivion, and Z. Levin, 1996: Seeding convective clouds
with ice nuclei or hygroscopic particles: A numerical study using
a model with detailed microphysics. J. Appl. Meteor., 35, 1416–
1434.

Roach, W. T., R. Brown, S. J. Caughey, J. A. Garland, and C. J.
Readings, 1976: The physics of radiation fog: I—A field study.
Quart. J. Roy. Meteor. Soc., 102, 313–333.

Rosenfeld, D., and G. Gutman, 1994: Retrieving microphysical prop-
erties near the tops of potential rain clouds by multispectral
analysis of AVHRR data. Atmos. Res., 34, 259–283.

——, and W. L. Woodley, 2000: Convective clouds with sustained
highly supercooled liquid water down to 237.58C. Nature, 405,
440–442.

Schlamp, R. J., S. N. Grover, H. R. Pruppacher, and A. E. Hamielec,
1976: A numerical investigation of the effect of electric charges
and vertical external electric fields on the collision efficiency of
cloud drops. J. Atmos. Sci., 33, 1747–1755.

Seeßelberg, M., T. Trautmann, and M. Thorn, 1996: Stochastic sim-
ulations as a benchmark for mathematical methods solving the
coalescence equation. Atmos. Res., 40, 33–48.

Segal, Y., A. Khain, M. Pinsky, and D. Rosenfeld, 2004: Effects of
hygroscopic seeding on raindrop formation as seen from sim-

ulations using a 2000-bin spectral cloud parcel model. Atmos.
Res., 71, 3–34.

Shafrir, U., and T. Gal-Chen, 1971: A numerical study of collision
efficiencies and coalescence parameters for droplet pairs with
radii up to 300 microns. J. Atmos. Sci., 28, 741–751.

Silverman, B. A., and W. Sukarnjanaset, 2000: Results of the Thailand
warm-cloud hygroscopic particle seeding experiment. J. Appl.
Meteor., 39, 1160–1175.

Smythe, W. R., 1950: Static and Dynamic Electricity. 2d ed. McGraw-
Hill, 240 pp.

Tinsley, B. A., R. P. Rohrbauch, M. Hei, and K. V. Beard, 2000:
Effects of image charges on the scavenging of aerosol particles
by cloud droplets and on droplet charging and possible ice nu-
cleation processes. J. Atmos. Sci., 57, 2118–2134.

——, ——, and ——, 2001: Electroscavenging in clouds with broad
droplet size distributions and weak electrification. Atmos. Res.,
59–60, 115–135.

Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical
solution to the stochastic collection equation. J. Atmos. Sci., 44,
3139–3149.

Wang, P. K., S. N. Grover, and H. R. Pruppacher, 1978: On the effects
of electric charge on the scavenging of aerosol particles by
clouds and small raindrops. J. Atmos. Sci., 35, 1735–1743.

Woodley, W. L., and D. Rosenfeld, 1999: Comparison of radar-de-
rived properties of Texas clouds receiving one of three treat-
ments: AgI ejectable flares or hygroscopic flares or no seeding.
J. Wea. Modif., 31, 29–41.

Yin, Y., Z. Levin, T. G. Reisin, and S. Tzivion, 2000: Seeding con-
vective clouds with hygoscopic flares. Numerical simulations
using a cloud model with detailed microphysics. J. Appl. Me-
teor., 39, 1460–1472.

——, ——, ——, and ——, 2001: On the response of radar-derived
properties to hygroscopic flare seeding. J. Appl. Meteor., 40,
1654–1661.

Zuev, V. E., 1974: Propagation of visible and infrared radiation in
the atmosphere (translated from Russian ‘‘Sovetskoe Radio’’
Moscow, 1970). Israel Program for Soviet Translations.




