Ms # JA062715T /Revised

## An efficient computational method for predicting rotational diffusion tensors of globular proteins

## using an ellipsoid representation

## Yaroslav E Ryabov, Charles Geraghty, Amitabh Varshney, and David Fushman

List of the 841 PDB files used in this study:

4znf, 4tgf, 4fgf, 5znf, 1zwf, 1xif, 1rcf, 1phf, 1prv, 1psf, 1psv, 1ptf, 1gnf, 1whf, 1thv, 1tif, 1tiv, 1tyv, 1kpf, 1hmf, 1hnf, 1haf, 1hcv, 1hc6, 1hev, 1iyv, 1nif, 1nef, 1oav, 1lrv, 1mof, 1mbf, 1bif, 1bkf, 1ba6, 1bc6, 1brf, 1cnv, 1cof, 1ctf, 1aj6, 1ak6, 1amf, 1anf, 1anv, 1aaf, 1abv, 1acf, 1ad6, 1az6, 1apf, 1arf, 1arv, 1a06, 1a26, 1gof, 1gcf, 1div, 1dmf, 1ddf, 1drf, 1drv, 1eaf, 1egf, 1erv, 2stv, 2hgf, 2omf, 2liv, 1zqw, 1ytw, 1rlw, 1rmg, lsig, 1pog, 1vig, 1vig, 1thg, 1tig, 1tgg, 1tsg, 1udg, 1udg, 1utg, 1jkw, 1jdw, 1jsg, 1hbg, 1huw, 1iow, 1ncg, Inew, 1ldg, 1bbg, 1ah7, 1aiw, 1acw, 1af7, 1ag7, 1aww, 1fkw, 1fow, 1edg, 1exg, 1erg, 1erw, 2eng, 6mht, 1zfd, 1xat, 1rkd, 1rmd, 1ret, 1ryt, 1rpt, 1smd, 1szt, 1std, 1pht, 1pot, 1pft, 1ppt, 1pud, 1put, 1vid, 1vsd, 1vsd, lvvd, 1wit, 1wkt, 1tit, 1tnt, 1tbd, 1tud, 1tvt, 1uxd, 1jdd, 1jud, 1kid, 1krt, 1kst, 1hkt, 1hmt, 1hcd, 1ift, 1igd, Inct, Inp4, Iojt, Iopd, Ilit, Ilbd, Ilst, Imit, Imat, Imbd, Imed, Imrt, Imut, Ibm4, Ibdd, Ibed, Ibfd, Ibg4, 1brt, 1bw4, 1chd, 1cid, 1cpt, 1ctt, 1agt, 1ag4, 1agt, 1art, 1atd, 1av4, 1awd, 1a9t, 1a5t, 1fid, 1fit, 1fnd, 1fct, 1fxd, 1gnd, 1gpt, 1gw4, 1dmd, 1dad, 1ddt, 1dst, 1eit, 1elt, 1ecd, 1edt, 1eft, 1erd, 1eut, 2pgd, 2ptd, 2tct, 2knt, 2had, 2hft, 2lbd, 2mrt, 2cmd, 2crd, 2abd, 2end, 3ukd, 3lzt, 3bct, 5eau, 1rie, 1rtu, 1sfe, 1stu, 1pne, 1pou, 1pbe, 1pce, 1vie, 1vpu, 1tle, 1tfe, 1une, 1uae, 1kte, 1hoe, 1neu, 1nre, 1lbu, 1mwe, 1ble, 1blu, 1bme, 1cc5, 1cfe, 1c25, 1aie, 1ak5, 1alu, 1ac5, 1af5, 1awe, 1a8e, 1fre, 1fsu, 1gne, 1dpe, 2uce, 2leu, 2cae, 3pte, 8dfr, 4i1b, 4mt2, 5icb, 1xnb, 1xer, 1yer, 1yub, 1rcb, 1sp2, 1svb, 1svr, 1phr, 1pi2, 1pmr, 1pdr, 1prb, 1prr, 1ps2, 1vib, 1wab, 1wer, 1tib, 1tfr, 1trb, 1udb, 1u9b, 1jer, 1knb, 1ksr, 1hlb, 1hnr, 1har, 1iab, 1nar, 1neb, 1ner, 1ngr, 1nxb, 1ntr, 1obr, 1oyb, 1opr, 1ovb, 1lab, 1ldr, 1leb, 1lfb, 1mxb, 1bhb, 1bmb, 1bnb, 1bor, 1bdb, 1bf2, 1byb, 1cdb, 1cfb, 1cfr, 1c52, 1air, 1ai2, 1aj2, 1akr, 1am2, 1aab, 1ab2, 1adr, 1ad2, 1ag2, 1aqb, 1aqr, 1arb, 1a32, 1a62, 1fmb, 1far, 1fbr, 1fdr, 1fsb, 1gcb, 1gpr, 1gur, 1dhr, 1dmr, 1dar, 1dyr, 1egr, 1eur, 2rn2, 2reb, 2sob, 2pnb, 2por, 2pf2, 2lhb, 2mbr, 2adr, 2apr, 2a0b, 2fmr, 2fcr, 2fxb, 2gar, 2gpr, 2dkb, 2dtb, 2dtr, 3seb, 3vub, 3kar, 3cyr, 3dfr, 1ycc, 1ygs, 1rhs, 1ris, 1rec, 1rfs, 1rgs, 1rss, 1sis, 1sqc, 1plc, 1pls, 1pmc, 1poc, 1pdc, 1pfc, 1pgs, 1pyc, 1puc, 1vis, 1vnc, 1vcc, 1tis, 1tn3, 1tfs, 1tys, 1jpc, 1kjs, 1hcc, 1hfc, 1ifc, 1igs, 1nls, 1ncs, 1ois, lone, lope, lore, llis, lmjc, lmme, lmde, lmse, lbds, lbec, lbgc, lbp3, lche, lclc, lcbs, lcxc, laj3, lale, 1al3, 1am3, 1ans, 1aac, 1aa3, 1ads, 1ass, 1avc, 1a1s, 1a3c, 1fas, 1fds, 1fyc, 1fts, 1fus, 1ghc, 1gks, 1gpc, 1dhs, 1dlc, 1dec, 1drs, 1ehs, 1esc, 2sns, 2sn3, 2sas, 2pkc, 2plc, 2wbc, 2hts, 2cy3, 2ctc, 3tss, 3b5c, 3c2c, 3grs, 8abp, 4ptp, 1rip, 1rgp, 1sap, 1sbp, 1sfp, 1php, 1pkp, 1qdp, 1qyp, 1vtp, 1tap, 1ulp, 1hip, 1hyp, 1htp, 1ihp, 1inp, 1nhp, 1nfp, 1opp, 1mpp, 1mrp, 1mup, 1bhp, 1bmp, 1bnp, 1bdp, 1bgp, 1br0, 1akp, 1ak0, 1amp, 1aop, 1acp, 1ac0, 1aep, 1afp, 1ap0, 1at0, 1aw0, 1a8p, 1a0p, 1flp, 1fgp, 1gvp, 1g3p, 1dtp, 1enp, 1erp, 2prp, 2hsp, 2mlp, 2bsp, 2cbp, 2cyp, 4hb1, 5p21, 6taa, 6fd1, 7rsa, 1zaq, 1yua, 1rp1, 1sh1, 1sra, 1plq, 1paa, 1pba, lpca, lpda, lpea, lptg, lwba, lwea, ltca, luba, luba, lha, lhal, liba, lica, lnoa, loxa, loxa, llla, llba, 11xa, 1mla, 1mba, 1mb1, 1mfa, 1bia, 1ba1, 1bea, 1be1, 1bp1, 1bv1, 1cpq, 1ah1, 1ak1, 1alq, 1aoa, 1aba, 1apa, 1apq, 1aua, 1a8q, 1a91, 1a6q, 1fna, 1fua, 1gca, 1gsa, 1ema, 2pia, 2ts1, 2u1a, 2baa, 2cba, 2fha, 2gf1, 2gsq, 3cla, 8acn, 6rxn, 1zin, 1ztn, 1ppn, 1vin, 1ten, 1tpn, 1jon, 1han, 1hxn, 1nin, 1nfn, 1ntn, 1omn, 1mfn, 1myn, 1btn, 1csn, 1ctn, 1akn, 1adn, 1axn, 1gln, 1gen, 1din, 1emn, 2fdn, 2ebn, 3prn, 3ctn, 1zfo, 1zto, 1xjo, 1roo, 1rpo, 1rro, 1sro, 1pdo, 1pfo, 1who, 1klo, 1ldo, 1lfo, 1boo, 1bco, 1bdo, 1beo, 1bso, 1coo, 1ceo, 1cgo, 1cpo, 1aho, 1ako, 1azo, 1a6o, 1dro, 5nul, 6cel, 1xbl, 1sxl, 1vil, 1tml, 1tal, 1tul, 1kal, 1hcl, 1iml, 1nkl, 1lml, 11cl, 11dl, 11xl, 11vl, 1mil, 1mml, 1mdl, 1bol, 1bal, 1btl, 1cjl, 1cvl, 1ail, 1aol, 1ayl, 1fbl, 1gal, 1dsl, 1eal, 1ecl, 1esl, 119l, 153l, 2sil, 2sxl, 2ptl, 2abl, 2ezl, 2erl, 3nul, 1xsm, 1rom, 1slm, 1psm, 1iam, 1ncm, 1lam, 1mzm, 1bam, 1cem, 1ahm, 1aim, 1amm, 1fdm, 1ezm, 2hvm, 2gdm, 1skz, 1ucz, 1hcz, 1idz, 1nsj, 1maz, 1mrj, 1brz, 1buz, 1czj, 1ctj, 1ajj, 1akz, 1abz, 1adz, 1afj, 1axj, 1ayj, 1apj, 1awj, 1a3z, 1a7j, 1fsz, 1ftz, 1grj, 4pfk, 1phk, 1pbk, 1tlk, 1tsk, 1urk, 1idk, 1npk, 1mek, 1msk, 1bak, 1bgk, 1cuk, 1aak, 1auk, 1a3k, 1fmk, 2sak, 2ilk, 2abk, 2ack, 3lck, 1pnh, 1pch, 1pex, 1vhh, 1vgh, 1toh, 1tdx, 1uch, 1kuh, 1hfh, 1hp8, 1ixh, 1nox, 1ndh, 1mgx, 1bnh, 1bnx, 1cd8, 1cex, 1cfh, 1cyx, 1csh, 1amx, 1an8, 1adx, 1af8, 1axh, 1ayx, 1ap8, 1ash, 1a1x, 1a68, 1ffh, 1gox, 1dtx, 2pth, 2hfh, 2ayh, 2ech, 2ezh, 3il8, 3cox, 1ra9, 1rsy, 1r69, 1pii, 1pmi, 1pmy, 1pty, 1qli, 1vii, 1v39, 1whi, 1tmy, 1tfi, 1try, 1uby, 1jli, 1hfi, 1hpi, 1hqi, 1opy, 1lki, 1lci, 1lsi, 1mai, 1msi, 1bo9, 1bb9, 1ciy, 1cby, 1cdy, 1cpy, 1ah9, 1aly, 1amy, 1aoy, 1af9, 1agi, 1aty, 1a0i, 1gky, 1gai, 1doi, 1dxy, 1eny, 1ery, 2phy, 2pii, 2tgi, 2acy, 2dri, 3chy.

Supporting Table 1. Comparison of the predictions of the inertia-equivalent ellipsoid model<sup>1</sup> with the experimental data for several proteins (set A). *f* is the scaling factor required to match the experimental and calculated  $\tau_c$  values:  $\tau_c^{exp} = f^3 \tau_c^{calc}$ .

|                                     |      |          | Inertia-equivalent Ellipsoid |            |         |
|-------------------------------------|------|----------|------------------------------|------------|---------|
|                                     |      | Experim. | f                            | f = 2.6    |         |
| Protein                             | PDB  | $	au_c$  | matching                     | $\tau_c$   |         |
|                                     |      | [ns]     |                              | Calc. [ns] | % Diff. |
| Malate synthase G                   | 1y8b | 55.3     | 2.514                        | 61.18      | 11      |
| Human serum albumin                 | 1a06 | 41.0     | 2.255                        | 62.85      | 53      |
| Maltose binding protein             | 1ezp | 28.6     | 2.370                        | 37.77      | 32      |
| β-lactoglobulin A (dimer)           | 1bsy | 23.2     | 2.459                        | 27.44      | 18      |
| $\Delta^5$ -3 ketosteroid isomerase | 1buq | 18.0     | 2.474                        | 20.90      | 16      |
| Leukemia inh. Factor                | 1lki | 14.9     | 2.710                        | 13.16      | -12     |
| Trypsin                             | 2blv | 14.8     | 2.693                        | 13.32      | -10     |
| Yellow fluorescent protein          | 2yfp | 14.8     | 2.546                        | 15.76      | 6       |
| Green fluorescent protein           | 1w7s | 14.2     | 2.505                        | 15.87      | 12      |
| Carbonic anhydrase                  | 2cab | 14.0     | 2.425                        | 17.26      | 23      |
| HIV-1 protease                      | 1bvg | 13.0     | 2.592                        | 13.12      | 1       |
| Savinase                            | 1svn | 12.4     | 2.489                        | 14.13      | 14      |
| Interleukin-1β                      | 6i1b | 12.4     | 2.737                        | 10.63      | -14     |
| Ribonuclease H                      | 2rn2 | 11.7     | 2.618                        | 11.47      | -2      |
| Cytochrome C2                       | 1c2n | 10.4     | 2.891                        | 7.57       | -27     |
| β-lactoglobulin A (mono)            | 1bsy | 9.7      | 2.526                        | 10.59      | 9       |
| Apomyoglobin                        | 1bvc | 9.5      | 2.438                        | 11.52      | 21      |
| Lysozyme                            | 1hwa | 8.3      | 2.578                        | 8.52       | 3       |
| Barstar C40/83A                     | 1bta | 7.4      | 2.976                        | 4.94       | -33     |
| Eglin c                             | 1egl | 6.2      | 2.646                        | 5.88       | -5      |
| Cytochrome <i>b</i> <sub>s</sub>    | 1wdb | 6.1      | 2.772                        | 5.04       | -17     |
| Calbindin-D9k+Ca <sup>2+</sup>      | 2bca | 5.1      | 2.719                        | 4.46       | -13     |
| Ubiquitin                           | 1ubq | 5.0      | 2.759                        | 4.18       | -16     |
| Calbindin-D9k                       | 1clb | 4.9      | 2.631                        | 4.73       | -3      |
| BPTI                                | 1pit | 4.4      | 2.784                        | 3.58       | -19     |
| Protein G                           | 1igd | 3.7      | 2.434                        | 4.51       | 22      |
| Xfin-zinc finger DBD                | 1znf | 2.4      | 3.151                        | 1.35       | -44     |
| Mean absolute value                 |      |          | 2.6 (0.2)                    |            | 17 %    |

|                                     |      |          | FAST-HydroNMR |         |
|-------------------------------------|------|----------|---------------|---------|
|                                     |      | Experim. | AER=3.2 Å     |         |
| Protein                             | PDB  | $	au_c$  | $\tau_{c}$    | ;       |
|                                     |      | [ns]     | Calc. [ns]    | % Diff. |
| Malate synthase G                   | 1y8b | 55.3     | 68.2          | 23      |
| Human serum albumin                 | 1a06 | 41.0     | 66.1          | 61      |
| Maltose binding protein             | 1ezp | 28.6     | 43.0          | 50      |
| β-lactoglobulin A (dimer)           | 1bsy | 23.2     | 27.6          | 19      |
| $\Delta^5$ -3 ketosteroid isomerase | 1buq | 18.0     | 22.4          | 24      |
| Leukemia inh. Factor                | 1lki | 14.9     | 13.1          | -12     |
| Trypsin                             | 2blv | 14.8     | 13.4          | -9      |
| Yellow fluorescent protein          | 2yfp | 14.8     | 14.6          | -1      |
| Green fluorescent protein           | 1w7s | 14.2     | 16.0          | 13      |
| Carbonic anhydrase                  | 2cab | 14.0     | 17.1          | 22      |
| HIV-1 protease                      | 1bvg | 13.0     | 14.1          | 8       |
| Savinase                            | 1svn | 12.4     | 13.6          | 10      |
| Interleukin-1β                      | 6i1b | 12.4     | 12.3          | -1      |
| Ribonucleaase H                     | 2rn2 | 11.7     | 12.2          | 4       |
| Cytochrome C2                       | 1c2n | 10.4     | 7.44          | -28     |
| β-lactoglobulin A (mono)            | 1bsy | 9.7      | 11.5          | 19      |
| Apomyoglobin                        | 1bvc | 9.5      | 11.0          | 16      |
| Lysozyme                            | 1hwa | 8.3      | 9.6           | 16      |
| Barstar C40/83A                     | 1bta | 7.4      | 5.8           | -22     |
| Eglin c                             | 1egl | 6.2      | 6.0           | -3      |
| Cytochrome $b_s$                    | 1wdb | 6.1      | 6.4           | 5       |
| Calbindin-D9k+Ca <sup>2+</sup>      | 2bca | 5.1      | 4.8           | -6      |
| Ubiquitin                           | 1ubq | 5.0      | 4.6           | -8      |
| Calbindin-D9k                       | 1clb | 4.9      | 4.8           | -2      |
| BPTI                                | 1pit | 4.4      | 4.5           | 2       |
| Protein G                           | 1igd | 3.7      | 4.6           | 24      |
| Xfin-zinc finger DBD                | 1znf | 2.4      | 1.7           | -29     |
| Mean absolute value                 |      |          |               | 16 %    |

*Supporting Table 2.* Comparison of the predictions of the FAST-HYDRONMR program<sup>2</sup> (version fast-hydronmr7c2lnx.exe) with the experimental data for proteins of set A.

Supporting Table 3. Comparison of the PCA-based predictions for the overall correlation time  $\tau_c$  for the 12 NMR-derived structures from protein set A (Table 1) with and without hydrogen atoms.

| Protein                             | PDB  | Exp.    | HLT = 2.8  Å   |           |                   | % difference |                       |
|-------------------------------------|------|---------|----------------|-----------|-------------------|--------------|-----------------------|
|                                     | code | _       | With hydrogens |           | Without hydrogens |              | between $\tau_{calc}$ |
|                                     |      | $	au_c$ | $	au_{calc}$   | Diff.     | $	au_{calc}$      | Diff.        | with and              |
|                                     |      | [ns]    | [ns]           | from exp. | [ns]              | from exp.    | without               |
|                                     |      |         |                | %         |                   | %            | hydrogens             |
| Malate synthase G                   | 1y8b | 55.3    | 45.7           | -17       | 45.1              | -18          | -2                    |
| Maltose binding protein             | 1ezp | 28.6    | 28.2           | -1        | 27.2              | -5           | -4                    |
| $\Delta^5$ -3 ketosteroid isomerase | 1buq | 18.0    | 16.7           | -7        | 16.4              | -9           | -2                    |
| HIV-1 protease                      | 1bvg | 13.0    | 12.9           | -1        | 12.4              | -5           | -5                    |
| Interleukin-1β                      | 6i1b | 12.4    | 11.1           | -10       | 10.8              | -13          | -3                    |
| Cytochrome C2                       | 1c2n | 10.4    | 7.7            | -26       | 7.5               | -28          | -4                    |
| Lysozyme                            | 1hwa | 8.3     | 9.2            | 11        | 8.9               | 7            | -3                    |
| Barstar C40/83A                     | 1bta | 7.4     | 6.0            | -19       | 5.9               | -20          | -2                    |
| Calbindin-D9k+Ca <sup>2+</sup>      | 2bca | 5.1     | 5.0            | -2        | 5.1               | 0            | 2                     |
| Calbindin-D9k                       | 1clb | 4.9     | 5.4            | 10        | 5.3               | 8            | -2                    |
| BPTI                                | 1pit | 4.4     | 4.6            | 5         | 4.4               | 0            | -4                    |
| Xfin-zinc finger DBD                | 1znf | 2.4     | 2.2            | -8        | 2.1               | -12          | -5                    |
| Mean absolute value                 |      |         |                | 10 %      |                   | 10 %         | 3.2 %                 |



Supporting Figure 1. Statistical properties of the rotational diffusion tensors for a representative set of 841 monomeric proteins (set B). These data were calculated using HYDRONMR with AER=3.2 Å (solid symbols) and the PCA based method for HLT =0.0 Å (open symbols), also indicated by the subscripts "H" and "PCA", respectively.

(a) The distribution of the overall rotational correlation times,  $\tau_H$  and  $2\tau_{PCA}$ . Both sets of the correlation time values obey the same log-normal law, Eq.S1 (below), represented by a solid line. The maxima of these distributions correspond to  $10.9\pm0.4$  ns; the other parameters are presented in Supporting Table 4. The shaded area indicates the confidence interval, from  $-\sigma$  to  $\sigma$  around the maximum of the log-normal distribution, which contains 68 % of all data; in this case from 4.7 to 25.4 ns. This plot was obtained by distributing the data among bins of constant width of  $d\ln x = 0.05$  (where  $x = \tau_H$  or  $2\tau_{PCA}$ ).

(b) Statistical distributions of the anisotropies (Eq.9, main text) of the oblate (top panel) and prolate diffusion tensors. Both  $|A_H - 1|$  and  $|A_{PCA} - 1|$  obey the same log-normal law (Eq.S1), represented by a solid line. Parameters of these distributions are presented in Supporting Table 4. The maxima of these distributions correspond to  $A_0 \approx 0.858 \pm 0.003$  for oblate and  $A_0 \approx 1.330 \pm 0.006$  for prolate tensors. The shaded areas correspond to the confidence intervals from  $-\sigma$  to  $\sigma$ , containing 68 % of all data; these intervals cover anisotropies from 0.819 to 0.889 for oblate and from 1.18 to 1.61 for prolate diffusion tensors, respectively. This plot was obtained by distributing the data among bins of constant width of  $d\ln x = 0.05$  (where  $x = |A_H - 1|$  or  $|A_{PCA} - 1|$ ).

(c) Statistical distributions of the rhombicities Rm (Eq.9) of the diffusion tensors. The shaded area corresponds to the range 0 < Rm < 0.35 containing 68 % of the data.



Supporting Figure 2. Distribution of the tilt angles between the principal axes for the diffusion tensors predicted for the 841 proteins of set B using HYDRONMR with AER=3.2 Å (subscript "H") and the PCA-based method with HLT=0.0 Å (subscript "PCA"). All angles are in degrees. All data obey log-normal distributions (Eq.S1) shown by solid lines in all panels. Parameters of these distributions are presented in Supporting Table 4. The maxima of these distributions are at  $X_0=7.0^{\circ}\pm0.3^{\circ}$ ,  $Y_0=8.7^{\circ}\pm0.4^{\circ}$ , and  $Z_0=3.7^{\circ}\pm0.1^{\circ}$ . The shaded areas in all panels indicate confidence intervals from  $-\sigma$  to  $\sigma$ , containing 68 % of all data: these intervals are from 2.6° to 19° for the angles between the x-axes, from 3.6° to 21° between the y-axes, and from 1.6° to 8.5° for the angles between the z-axes. These plots were obtained by distributing the data among bins of constant width of  $d\ln x = 0.05$  (where x are the corresponding angles). The log-normal distribution for the tilt angles between the methods plus random errors in the eigenvectors.

The data presented in Supporting Figures 1 and 2 where analyzed using a log-normal distribution

$$dn = \frac{n_0}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2}\left(\frac{\ln x - \ln x_0}{\sigma}\right)^2\right\} d\ln x$$
(S1)

Supporting Table 4. Parameters of the log-normal distribution of the overall tumbling time ( $\tau_H$ ,  $\tau_{PCA}$ ), the anisotropy ( $A_H$ ,  $A_{PCA}$ ) of the rotational diffusion tensors calculated for the representative set of 841 proteins (set B), and the tilt angles (in degrees) between the corresponding principal axes of the diffusion tensors calculated using HYDRONMR with AER=3.2 Å (subscript "H") and the PCA-based method with HLT=0.0 Å (subscript "PCA") for the set of 841 proteins (set B). The actual data and the corresponding log-normal distribution functions are shown in the Supporting Figures 1 and 2.

| x                                  | $n_0$    | σ          | <i>x</i> <sub>0</sub> |
|------------------------------------|----------|------------|-----------------------|
| $\tau_{H}, 2\tau_{PCA}$ [ns]       | 43.7±1.7 | 0.84±0.035 | 10.9±0.4 [ns]         |
| 1- $A_H$ , 1- $A_{PCA}$ (oblate)   | 4.2±0.3  | 0.24±0.023 | 0.142±0.003           |
| $A_{H}$ -1, $A_{PCA}$ -1 (prolate) | 36.1±0.9 | 0.61±0.012 | 0.330±0.006           |
| angle between $X_H$ and $X_{PCA}$  | 40.6±1.2 | 0.98±0.035 | 7.0±0.3°              |
| angle between $Y_H$ and $Y_{PCA}$  | 40.6±1.3 | 0.89±0.035 | $8.7 \pm 0.4^{\circ}$ |
| angle between $Z_H$ and $Z_{PCA}$  | 40.4±1.0 | 0.82±0.023 | 3.7±0.1°              |

References

(1) Taylor, W. R.; Thornton, J. M.; Turnell, W. G. Journal of Molecular Graphics 1983, 1, 30-38.

(2) Ortega, A.; Garcia de la Torre, J. J Am Chem Soc 2005, 127, 12764-12765.