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Damped oscillations in view of the fractional oscillator equation
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Department of Applied Physics, School of Applied Science, The Hebrew University of Jerusalem, Givat Ram 91904, Jerusalem

~Received 21 May 2002; published 1 November 2002!

This paper discusses the fractional oscillator equation involving fractional time derivatives of the Riemann-
Liouville type. The exact solution of the fractional oscillator equation was obtained. On this basis the corre-
spondence between the fractional time derivative and the dissipative properties was established. The relation-
ship between the order of the fractional time derivative and the dissipative constant was derived. In addition to
the exact solution, the perturbation approach was developed as well. It was shown that the perturbation method
and exact solution lead to similar results. On the basis of the exact solution, the concept of fractional time
evolution was illustrated.
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I. INTRODUCTION

These days the phenomena that obey the equation of
tion with fractional derivatives have become a comm
theme. Introducing the fractional derivatives to descr
physical phenomena seems to be beneficial for complex
erogeneous systems where conventional approaches
failed. As an example, one could mention the problem
anomalous diffusion.1–4 Experimental examples of suc
transport are numerous, e.g., amorphous semiconducto5,6

polymers,7–9 composite heterogeneous films,10 porous
media,11,12 and many others~for references, see recent r
view Ref. 4!. Today a phenomenon widely discussed in t
framework of the so-called fractional diffusion approach i
plies that instead of using the first time derivative in t
conventional transport equation, a time derivative of fra
tional order4,9,13–19may be used.

At the same time, similar features are inherent not only
the transport processes. Another generally acknowled
phenomenon described by the equation of motion with
fractional time derivative is the nonexponential relaxation
Cole-Cole type. Experimental evidence of this type of rela
ation has preceded that of the anomalous transport,20 al-
though its relationships to the fractional derivatives were r
ognized only recently.21–25As well as the previous example
the nonexponential Cole-Cole relaxation is inherent in co
plex disordered materials such as associated liquids,20 binary
mixtures,25,26 porous materials,27 polymers,28 polymer
composites,29 liquid crystals,30 etc.

Despite the fact that introducing the fractional time d
rivatives in the cases mentioned above seems to be justi
there is no clear understanding of the basic reasons for f
tional derivation in physics. From a mathematical point
view, the fractional calculus, which is a synonym of the te
‘‘integration and differentiation of an arbitrary order,’’ is
deeply elaborate and branched mathematical subject.31–34 In
general, introducing a fractional time derivation into diffe
ential equations that describe physical phenomena is just
in the framework of the fractional time evolutio
concept.24,35,36However, lack of physical applications lead
to various problems. Many authors replace the integer t
derivative by a fractional one on a purely mathematical
heuristic basis.13–17,21–23Moreover, the variety of mathemat
0163-1829/2002/66~18!/184201~8!/$20.00 66 1842
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cal definitions for the fractional derivatives31–34 leads to the
possibility to discuss different types of derivatives depend
on the physical situation. Sometimes this raises concep
difficulties in interpretation of the results even if one do
not mention the issues related to the correct establishme
initial and border conditions.19,24,33

One possible way to clarify things is to discuss rath
simple model problems involving fractional derivatives a
to compare the results with classical analogs. In a sense,
may reiterate the way traversed by the conventional anal
to the physics. The mentioned examples of the fractio
diffusion and nonexponential relaxation already clarify ma
of the aspects of the physical application of fraction
calculus.4,19,24,25In this paper we will discuss the problem o
the oscillator equation involving a fractional time derivativ

II. FRACTIONAL OSCILLATOR

In the present study we will be concerned with the eq
tion

Dt
22«@x«~ t !#1n0

22«x«~ t !5 f 0n0
2«g«~ t !, ~1!

which we will call the ‘‘fractional oscillator’’ equation. In
this equationDt

22« is the fractional Riemann-Liouville de
rivative operator of order 1<22«,2 and with a lower limit
t→2` ~see Appendix A!.

Below we will compare Eq.~1! with the conventional
equation of a damped oscillator:

d2xt~ t !

d t2
1

2

t

d xt~ t !

d t
1v0

2xt~ t !5 f 0gt~ t !. ~2!

In Eqs. ~1! and ~2!, the subscripts« and t are attributed to
the fractional and conventional oscillator models, resp
tively, x(t) is an unknown function that in the simplest ca
could be regarded as a displacement from the equilibr
position,t is a time variable,v0 andn0 are vibration eigen-
frequencies, and the term proportional to 2/t describes the
decay of oscillations in Eq.~2!. The functiong(t) in the
right-hand side of both equations is the so-called ‘‘sou
function.’’ Below, in order to provide energetically equiva
lent initial conditions for both oscillators, we will conside
g(t) asg«(t)5n0d(t) for Eq. ~1! andgt(t)5v0d(t) for Eq.
©2002 The American Physical Society01-1
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~2!, whered(t) is the Diracd function. This source function
represents initial pulses of a force applied to the oscillat
and f 0 is the strength of the pulses.

There are no doubts that Eq.~1! is not the only possible
way to introduce the fractional derivatives into the oscilla
equation. For instance, Ref. 37 discusses an approach b
on the Caputo fractional derivative definition. Neverthele
the choice of the Riemann-Liouville fractional derivativ
with lower limit t→2` is not arbitrary~see Appendix B!.
This choice provides us with the possibility to establish
physically reasonable initial condition and to discuss
Green’s function of Eq.~1!.

A. Naive approach

Using definition~B3!, one can obtain a Fourier transfor
of the Green’s functions for Eqs.~1! and ~2! as

x̃«~v!5
f 0n0

12«

~ iv!22«1n0
22«

~3!

and

x̃t~v!5
f 0v0

~ iv!212 t21~ iv!1v0
2

. ~4!

Inverting the above equations, one can immediately
the solutions

x«~ t !5 f 0~n0t !12«E22«,22«@2~n0t !22«# ~5!

for Eq. ~1! and

xt~ t !5
f 0v0e2t/t

V
sin~V t ! ~6!

for Eq. ~2!; whereV5Av0
22t22 andEa,b(y) is the Mittag-

Leffler function ~see Appendix A!.
Note that both Eqs.~5! and ~6! are physically valid only

for t>0, whereas for2`,t,0, x(t)[0. From a physical
point of view, this fact is a consequence of the casua
principle. For Eq.~6!, this directly follows from Eq.~4! that
has poles only in the upper part of thev complex plane.
Thus, inverting Eq.~4! one obtainsxt(t)[0 for t,0. In
contrast, for Eq.~3! in order to provide the casuality prin
ciple x«(t)[0 for t,0, one must establish the rule for by
passing of branching points in Eq.~3!.

In Fig. 1, one can see an example of solutions~5! and~6!.
Qualitatively, the behavior of those solutions is similar. Bo
exhibit oscillations ofx(t) with decreased amplitude ove
time. Thus, let us compare those functions quantitatively.
this, let us calculate the spectral intensityx̃2(v)
5 x̃(v) x̃(v)* for the Green’s-function spectra~3! and ~4!,

x̃«
2~v!5

f 0
2n0

222«

@v22«2n0
22«w«#21n0

422«@12w«
2#

~7!

and
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x̃t
2~v!5

f 0
2v0

2

@v22~v0
222 t22!#214 V2t22

, ~8!

wherew«5ucos@p(22«)/2#u, and the asterisk denotes com
plex conjugation.

In the above equations the termsn0
22«w« andv0

222t22

settle positions of the maxima of the spectral peaks wh
n0

422«@12w«
2# and 4V2t22 determine their height. Thus

comparing Eqs.~7! and~8!, one could establish the following
system of equations:

n0w«
1/(22«)5Av0

222 t22,

n0
2@12w«

2#1/(22«)5
2 V

t
. ~9!

Resolving this system one finds the set of parametersn0 ,
v0 , «, andt for those spectral intensities~7! and~8! of the
Green’s functions~5! and~6! which have the same peak po
sitions and height of their maxima.

Unfortunately, the exact solution of the transcenden
system~9! is not obvious. Thus, let us discuss the situati
where«!1 andt21!v0; in other words, the situation whe
vibrations of the oscillators are weakly damped. After line
ization, system~9! gives

n0>v0 ,

«>
4

p v0t
. ~10!

In Fig. 2, one can see the frequency dependence of
spectral intensity, realx̃8(v) and imaginaryx̃9(v) parts of
the Green’s-function spectra~3! and ~4!, which obey rela-
tionship ~10!. The spectral intensity peak for the fraction
oscillator is a little broader than the peak corresponding
the conventional oscillator. Thus, even for weak damping~by
linear approximation!, the total energy losses are larger in t
case of the fractional oscillator. The difference between
behavior of fractional and conventional oscillators is ev
more clear forx̃8(v) and x̃9(v).

FIG. 1. Schematic picture presenting solutions of fractio
@dash-dot line forx«(t)] and conventional@solid line for xt(t)]

oscillator equations.v05n051, f 051, «50.15, andt56 2
3 .
1-2
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B. Perturbation theory

In general, the considerations presented above show
the presence of a fractional derivative in the oscillator eq
tion is qualitatively equivalent to the presence of a dissi
tive term in the conventional oscillator equation. There
exact solutions for both models. However, the fractional
cillator equation as well as the equation of a damped os
lator are the idealized models of real systems. Other mo
involving a fractional time derivative could not imply exa
solutions. Therefore, in other possible applications of
fractional calculus, one may be interested in an approxima
solution obtained in terms of the perturbation theory. Th
let us demonstrate the perturbation-theory technique in
case of a fractional oscillator.

The perturbation theory is a standard tool that is utiliz
in various fields of modern physics~see, for example, Ref
38 on statistical mechanics!. There are many ways to esta
lish perturbation series. In Appendix C, we review basic d
nitions of the perturbation approach we used here.

Let us start with the equation of an oscillator without a
energy losses, which we will regard as the unperturbed
tem,

F̂0@x~ t !#5
d2x~ t !

d t2
1v0

2x~ t !5 f 0d~ t !, ~11!

whereF̂0 is a differential operator corresponding to the u
perturbed solutionx0(t)5 f 0sin(v0t) for t>0. For 2`,t
,0, x0(t)[0 due to the casuality principle.

If there is a perturbation that can represented through
perturbation operatorF̂p , thenx(t) obeys the following:

~ F̂01F̂p!@x~ t !#5 f 0d~ t !. ~12!

FIG. 2. ~a! Spectral intensity normalized on its maximal valu
f m

2 . ~b! Real and imaginary parts of the Green’s functions norm
ized on f m . On both figures, the dash-dot lines represent fractio
oscillators and solid lines represent conventional oscillators. Fo
the curves,v05n0 , t2150.1v0, and«54(p v0t)21'0.127.
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Suppose that the ratio of operatorF̂p andF̂0 norms is a small
parameteriF̂0

21F̂pi!1. In this case, the solutionx(t) could
be represented as a series of perturbation-theory correc
xk(t),

x~ t !5 (
k50

`

xk~ t !. ~13!

The simplest way to calculate perturbation series in
case is to use the Fourier transform, which for the unp
turbed operator gives

F̃05~ iv!21v0
2 . ~14!

For a fractal oscillator equation, the perturbation opera
may be represented as

F̂«5v0
«Dt

22«2
d2

d t2
, ~15!

which after Fourier transform gives

F̃«5v0
«~ iv!22«2~ iv!2. ~16!

Then, in the case of a fractal oscillator following Eq.~C9!,
the Fourier transform of the first-order term is

x̃1,«~v!52
f 0v0@v0

«~ iv!22«1v2#

~v0
22v2!2

. ~17!

The standard technique allows us to invert this express
and obtain forF̂« a first-order term in the perturbation serie
as

x1,«~ t !5
f 0

2 Fv0t cos~v0t !1sin~v0t !2v0t cosS v0t2
p«

2 D
2~12«!sinS v0t2

p«

2 D G . ~18!

For a conventional damped oscillator equation, the per
bation operator may be expressed as

F̂t5
2

t

d

d t
, ~19!

which after Fourier transform gives

F̃t5
2 i v

t
. ~20!

Thus, following the procedure described above, one co
obtain

x̃1,t~v!52
2 f 0v0iv

t~v0
22v2!2

, ~21!

and after inverting,

l-
l
ll
1-3
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x1,t~ t !52
f 0t

t
sin~v0t !. ~22!

It is interesting to note that the series expansion of
~18! for «!1 givesx1,«(t);2( f 0p v0t «/4)sin(v0t). Then,
comparing this with Eq.~22!, one could again obtain resu
~10!. This proves that the developed perturbation approac
consistent with an exact solution~5!.

Another observation is that the first-order correction
perturbation theory for a damped oscillator equation co
cides with the first-order term of Taylor’s expansion for exa
solutions~6! with respect to the small parametert/t and the
additional conditiont21!v0. However, in general, the
terms of perturbation series do not necessarily coincide w
Taylor’s expansion terms because in the case of the pe
bation approach described above, the role of small par
eters belongs not to« and (v0t)21, but to iF̂0

21F̂«i and

iF̂0
21F̂ti .

C. Two bodies linked by a spring

The next model problem that could help us clarify phy
cal features of a fractional oscillator is the problem of tw
bodies linked by a spring with dissipation~say two bodies
situated in some viscose medium!. Let us discuss two possi
bilities to introduce energy losses: through fractional tim
derivatives and by the conventional approach. We will o
discuss a one dimensional problem and will assume that
bodies are equivalent. Thus, for these two models one c
establish two systems of equations

Dt
22«@h«~ t !#5

f 0v0
2«

2
g«~ t !,

Dt
22«@j«~ t !#12 v0

22«~j«~ t !2j0!52 f 0v0
2«g«~ t !

~23!

for the fractal oscillator and

d2ht~ t !

d t2
1

2

t

d ht~ t !

d t
5

f 0

2
gt~ t !,

d2jt~ t !

d t2
1

2

t

d jt~ t !

d t
12v0

2~jt~ t !2j0!52 f 0gt~ t !

~24!

for the conventional model.
In the above equations,h5(y21y1)/2 is the center of

gravity position,j5y22y1 is the distance between the bo
ies’ centers,j0 is the distance between the bodies’ centers
rest, andf 0g(t) once again represents the initial pulse o
force applied to the first body~see Fig. 3!.

After Fourier transform for system~23!, one gets

h̃«~v!5
f 0

2

v0
12«

~ i v!22«
,

18420
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j̃«~v!5
2 v0

22«j0dv~v!2 f 0v0
12«

2 v0
22«1~ iv!22«

, ~25!

and

h̃t~v!5
f 0

2

v0

@~ i v!212 t21~ i v!#
,

j̃ t~v!5
2 v0

2j0dv~v!2 f 0v0

~ iv!212 t21~ i v!12 v0
2

, ~26!

for system~24!. In those equations,dv(v) is once again the
Dirac d function, but in the frequency domain.

Using exact solutions~5! and~6! from Eqs.~25! and~26!,
one gets

h«~ t !5
f 0

2 G~22«!
~v0t !12«,

j«~ t !5j02 f 0~v0t !12«E22«,22«@22~v0t !22«#, ~27!

and

ht~ t !5
f 0v0t

4
~12e22 t/t!,

jt~ t !5j02
f 0v0e2t/t

A2 v0
22t22

sin~ tA2 v0
22t22!. ~28!

whereh(t)[0 andj(t)[j0 for 2`,t,0 due to the casu-
ality principle.

Figure 4 represents an example of solutions~27! and~28!.
From Fig. 4~b!, one can see that the vibrations of fraction
and conventional oscillators are qualitatively similar. F
large energy losses (t2150.3v0 and«'0.4) after the initial
pulse, both oscillators perform a few vibrations and then
turn to equilibriumj(t)→j0. However, the behavior of the
centers of gravity of those systems is qualitatively differe
@see Fig. 4~a!#. For the conventional oscillator, the evolutio
of the center gravity is finite, and at sufficiently long time
reaches a stationary positionf 0v0t/4. The evolution of the
center of gravity for the fractional oscillator is infinite an
exhibits a power-law behavior.

III. CONCLUSIONS AND DISCUSSION

Let us summarize and discuss the results obtained. F
one can appreciate the exact solution~5! obtained for the

FIG. 3. Schematic picture explaining notations of Eqs.~23! and
~24!.
1-4
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DAMPED OSCILLATIONS IN VIEW OF THE . . . PHYSICAL REVIEW B 66, 184201 ~2002!
fractional oscillator equation. In this regard, one must m
tion that the Mittag-Leffler function is commonly used
many physical problems to express a solutions of differen
equations involving the fractional time derivatives.22,24,37For
example, Ref. 22, on the basis of the fractal time rando
walk relaxation model, discusses relaxation function prop
tional to the Mittag-Leffler function. In Ref. 24, the solutio
similar to Eq.~5! appears in relation to the fractional Cauc
problem and then later discussed as the probability den
for a time interval between two consecutive jumps for t
continuous time random walk scheme. The authors of R
37 discuss a fractional oscillator model described by an
tegral equation involving a fractional integral. However, th
assume the initial conditions in the same way as for the c
ventional damped oscillator. From our point of view, as
mentioned in this paper, this is not fully correct. Thus, th
obtain a solution similar to Eq.~5! but without the power-law
factor (v0t)22«. Therefore, in the best of our knowledg
until now nobody discussed the solution in form~5! in rela-
tion to the fractional oscillator problem.

Solution ~5! led us to the conclusion that introducing
fractional time derivative of the Riemann-Liouville type in
the oscillator equation is qualitatively equivalent to introdu
ing a dissipative term. This observation is not unexpec
The works4,9,13–19,25on anomalous diffusion and nonexp
nential relaxation also support this point.

The physical interpretation implies that the Green’s fun
tion represents a response tod-like impact. Therefore, the
Green’s function is related to the complex susceptibility
the systems discussed. The results represented in Fig.~b!
show that the complex Fourier image of the Green’s funct
for a fractional oscillator exhibits a slight excess of the hig
frequency wing. Thus, at least hypothetically, the fractio
oscillator model could be utilized to explain nonunifor
broadening in various applications of spectroscopic metho

FIG. 4. Center of gravity position~a! and distance between th
bodies’ centers~b! as a function of time. On both figures, dash-d
lines represent the fractional oscillator and solid lines represen
conventional oscillator. For all the curves,t2150.3v0 , «
54(p v0t)21'0.382, andf 05j051.
18420
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Relationships~10! establish a connection between the o
der of the fractional time derivative and the parameters of
conventional oscillator equation. The general heuristic m
of this result is the fact that in the framework of the mod
discussed, the order of the fractional derivative was relate
the vibrational frequencyv0 as well as to the decay consta
t21. The vibrational frequency is dependent on the prop
ties of the system itself. For example, in the case discus
v0 is dependent on the spring elastic modulus and
masses of the bodies. The decay constant is dependent o
property of the medium where the system is situated.
instance, in the case discussed,t could be related to the
viscosity of the medium. Thus, Eqs.~10! show that the frac-
tional time derivative in the oscillator equation could be r
garded as a result of the interplay between the system i
and the surrounding medium.

In Sec. II B of the presented paper, the application of
perturbation approach to the problem of fractional oscilla
is discussed. Using this approach one could again obtain
result ~10!. This proves the self-consistency of the metho
used. At first glance it seems that the existence of an e
solution ~5! depreciates the significance of the perturbat
method. However, the presented perturbation approach c
be used not only for the problem of a fractional oscillator b
also for other problems involving fractional time derivative

In Sec. II C, the problem of two bodies linked by a sprin
was discussed. This problem illustrates two significant po
in the application of the fractional time derivatives to phy
cal problems. First of all, it once again highlights the re
tionships between the fractional time derivative and the d
sipative effects. Second, it shows that the fractional ti
derivatives lead to the possibility of a new class of statio
arity. This fractional stationary was mentioned in the fram
work of the so-called fractional time evolutio
concept.24,35,36 This concept establishes in addition to th
conventional constants a second class of stationary states
obey the power-law time dependence. In Fig. 4~a!, one can
see an illustration of this fact. After the initial pulse of
force, the center of gravity position of the conventional o
cillator goes to a constant stationary position while the cen
of gravity of the fractional oscillator goes to infinity a
f 0(v0t)12«. The behavior of the fractional oscillator in thi
case also illustrates the concept ‘‘coarse graining’’ for d
grees of freedom. The variablesy1 and y2, independent at
short times, later become coupled and exhibit joint pow
law behavior.

There are no doubts that the models presented are sim
fied examples rather than models of real physical situatio
However, we hope that these examples help clarify gen
ideas that underlay possible physical application of fractio
time derivatives. Moreover, the presented models could
improved. For example, one could discuss nonharmonic
brations and the problem of several linked fractional osci
tors. In this case, the mentioned perturbation approach c
be helpful.
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APPENDIX A: DEFINITIONS

The Riemann-Liouville fractional derivative of ordern
21<g,n is defined31–34 as

aDt
g@ f ~ t !#5

dn

d tn
aI t

n2g@ f ~ t !#, ~A1!

where

aI t
q@ f ~ t !#5

1

G~q!
E

a

t

~ t2t8!q21f ~ t8!d t8 ~A2!

is the Riemann-Liouville fractional integral of order 0,q
with lower limit t→a, 2`<a,t,1`, nPN, andG(q) is
the G function.

An alternative way to define a fractional derivative of t
Riemann-Liouville type is

aD̄t
g@ f ~ t !#5aI t

n2gF dn

d tn
f ~ t !G . ~A3!

Then

aDt
g@ f ~ t !#5aD̄t

g@ f ~ t !#1 (
k50

n21
f (k)~a!~ t2a!k2g

G~11k2g!
, ~A4!

where

f (k)~a!5
dkf ~ t !

d tk
U

t→a

.

Note that in this paper, instead of the usual way
writing2`Dt

g for a fractional derivative of orderg with a
lower limit t→2`, we will use notationDt

g for simplifica-
tion.

Sometimes solution of differential equations involving t
fractional time derivatives may be represented through
so-called Mittag-Leffler function39

Ea,b~y!5 (
k50

`
yk

G~a k1b!
. ~A5!

APPENDIX B: INTEGRAL TRANSFORMS AND INITIAL
CONDITIONS

Let us now discuss Laplace and Fourier transforms of
Riemann-Liouville fractional derivatives. Let us define t
direct Laplace transform as

L@ f ~ t !#5 f̃ L~s!5E
0

`

e2s tf ~ t !d t ~B1a!

and inverse Laplace transform as
18420
n

f

e

e

L 21@ f̃ L~s!#5 f ~ t !5
1

2p i Es2 i`

s1 i`

es tf̃ L~s!d s, ~B1b!

with Laplace variables, fixed s.0, and i 5A21. Then,
from Eqs.~A1! and ~B1a!, for a50, one realizes31–34 that

L†0Dt
g@ f ~ t !#‡5sg f̃ L~s!2 (

k50

n21

sk
0Dt

g212k@ f ~ t !#u t→01 .

~B2!

Let

F@ f ~ t !#5 f̃ ~v!5E
2`

1`

e2 i vt f ~ t !d t ~B3a!

be the direct Fourier transform, and

F 21@ f̃ ~v!#5 f ~ t !5
1

2pE2`

1`

ei vt f̃ ~v!d v ~B3b!

be the inverse Fourier transform with cyclic frequencyv.
Then, from Eqs.~A1!, ~A3!, and ~B3a! for a→2`, one
could obtain31–34

F†Dt
g@ f ~ t !#‡5F†D̄t

g@ f ~ t !#‡5~ iv!g f̃ ~v!. ~B4!

Next, let us discuss a differential equation

F̂@ f ~ t !#50, ~B5!

where F̂ is a differential operator involving the fractiona
time derivatives of the highest-order0Dt

g with n21<g,n
and solutionf (t) is defined fort.0 . In order to obtain this
solution following Eq.~B2!, one must establishn initial con-
ditions in the form

0Dt
g212k@ f ~ t !#u t→015Ck

g , k50,1, . . . ,n21, ~B6!

where all Ck
g are constants. For an integerg, one easily

recovers a conventional way to establish the initial con
tions. For example, let us discussF̂@ f (t)#5 f̈ (t)
12 t21 ḟ (t)1v0

2f (t), with g52. Then, following Eq.~B6!
in order to obtainf (t), one needs to establish the initia
position f (0)5C1

2 and velocity ḟ (0)5C0
2. However, for a

fractionalg, the constantsCk
g are hardly interpretable from

the physical point of view. Thus, let us discuss an alterna
approach.

It is known40 that initial conditions for the homogeneou
differential equation~B5! could be converted into genera
ized sources on the right-hand side of the nonhomogene
equation

F̂@ f ~ t !#5g~ t !, ~B7!

where the functiong(t) is dependent on the initial condition
themselves and the particular form ofF̂. In the general case
the functiong(t) could involve generalized functions such
the Dirac d function d(t) and the Heaviside step functio
u(t). For example, if once againF̂@ f (t)#5 f̈ (t)12 t21 ḟ (t)
1-6
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1v0
2f(t), then the initial conditionsf (0)5C1

2 and ḟ (0)5C0
2

could be converted into g(t)5u(t)C1
21d(t)(C0

2

12 t21C1
2).

However, for certain initial conditions~B6!, in order to
obtain the solutionf (t) of differential equation~B5! for t
.0, one needs to establishg(t) for 2`,t,1`. More
rigorously speaking, one needs to establish an analytic c
tinuation of F̂ and f (t) for 2`,t<0. This can easily be
done by replacing all fractional derivatives0Dt

g with lower
limit t→0 with fractional derivativesDt

g with lower limit t
→2`.

Then, the solution of the problem can be performed in
framework of the Green’s-function approach. In this ca
one must first resolve

F̂@G~ t !#5d~ t !, ~B8!

where G(t) is the so-called Green’s function of Eq.~B7!.
Then, using the convolution theorem, the solutionf (t) for
any g(t) could be obtained as

f ~ t !5E
2`

1`

G~ t2t8!g~ t8!d t8. ~B9!

In contrast toCk
g , a physical interpretation ofd(t) is more

clear. For example, in Eqs.~1! and~2!, it represents an initia
pulse of a force and the Green’s functions of those equat
represent responses to this impact. Thus, due to Eq.~B9!, any
g(t) could be regarded as the amplitude of the force t
changes with time.

APPENDIX C: PERTURBATION SERIES

Let us discuss a physical system that obeys the differen
equation

F̂0@x~ t !#5g~ t !, ~C1!

whereF̂0 is an unperturbed differential operator. Then, let
suppose that this physical system is exposed to the pertu
tion. Let F̂p be the operator that describes this perturbati
Let us assume that bothF̂0 and F̂p are linear operators an
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