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Damped oscillations in view of the fractional oscillator equation
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This paper discusses the fractional oscillator equation involving fractional time derivatives of the Riemann-
Liouville type. The exact solution of the fractional oscillator equation was obtained. On this basis the corre-
spondence between the fractional time derivative and the dissipative properties was established. The relation-
ship between the order of the fractional time derivative and the dissipative constant was derived. In addition to
the exact solution, the perturbation approach was developed as well. It was shown that the perturbation method
and exact solution lead to similar results. On the basis of the exact solution, the concept of fractional time
evolution was illustrated.
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l. INTRODUCTION cal definitions for the fractional derivativés3*leads to the
possibility to discuss different types of derivatives depending

These days the phenomena that obey the equation of men the physical situation. Sometimes this raises conceptual
tion with fractional derivatives have become a commondifficulties in interpretation of the results even if one does
theme. Introducing the fractional derivatives to describenot mention the issues related to the correct establishment of
physical phenomena seems to be beneficial for complex helditial and border condition¥’>*%3
erogeneous systems where conventional approaches haveOne possible way to clarify things is to discuss rather
failed. As an example, one could mention the problem ofsimple model problems involving fractional derivatives and
anomalous diffusiod=* Experimental examples of such to compare the results with classical analogs. In a sense, one
transport are numerous, e.g., amorphous semiconddctors,may reiterate the way traversed by the conventional analysis
polymers’~® composite heterogeneous fildfs, porous O the physics. The mentioned examples of the fractional
media'>*? and many othersfor references, see recent re- diffusion and nonexponential relaxation already clarify many
view Ref. 4. Today a phenomenon widely discussed in theof the aspects of the physical application of fractional
framework of the so-called fractional diffusion approach im-calculus!**?*#%In this paper we will discuss the problem of
plies that instead of using the first time derivative in thethe oscillator equation involving a fractional time derivative.
conventional transport equation, a time derivative of frac-
tional ordef°*3-*may be used. Il. FRACTIONAL OSCILLATOR

At the same time, similar features are inherent not only in In the present study we will be concerned with the equa-
the transport processes. Another generally acknowledge,[rljlOn P y q
phenomenon described by the equation of motion with a
fractional time denvauye is the npnexponent!al relaxation of th_s[Xs(t)]'f' vg‘*’xg(t)= forg °ga(t), 1)
Cole-Cole type. Experimental evidence of this type of relax-
ation has preceded that of the anomalous tran§Bait; which we will call the “fractional oscillator” equation. In
though its relationships to the fractional derivatives were recthis equationD?~¢ is the fractional Riemann-Liouville de-
ognized only recentlf*~2°As well as the previous example, rivative operator of order £2—e<2 and with a lower limit
the nonexponential Cole-Cole relaxation is inherent in comi— —o (see Appendix A

plex disordered materials such as associated licfdidmary Below we will compare Eq(1) with the conventional
mixtures?2% porous materiald’ polymers?® polymer equation of a damped oscillator:
composite? liquid crystals® etc.
Despite the fact that introducing the fractional time de- d2x,(t) 2 dx,(t) )
rivatives in the cases mentioned above seems to be justified, dz 7 dt + X (1) =fog.(1). 2

there is no clear understanding of the basic reasons for frac-

tional derivation in physics. From a mathematical point ofIn Egs.(1) and(2), the subscripte and r are attributed to
view, the fractional calculus, which is a synonym of the termthe fractional and conventional oscillator models, respec-
“integration and differentiation of an arbitrary order,” is a tively, x(t) is an unknown function that in the simplest case
deeply elaborate and branched mathematical subjetln  could be regarded as a displacement from the equilibrium
general, introducing a fractional time derivation into differ- position,t is a time variablewy and v, are vibration eigen-
ential equations that describe physical phenomena is justifieflequencies, and the term proportional ta- 2lescribes the

in the framework of the fractional time evolution decay of oscillations in Eq(2). The functiong(t) in the
concept***>38However, lack of physical applications leads right-hand side of both equations is the so-called “source
to various problems. Many authors replace the integer timéunction.” Below, in order to provide energetically equiva-
derivative by a fractional one on a purely mathematical odent initial conditions for both oscillators, we will consider
heuristic basi¢>~1"?1-%Moreover, the variety of mathemati- g(t) asg,(t)=ry4(t) for Eq. (1) andg.(t)=wqd(t) for Eq.
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(2), whered(t) is the Diracé function. This source function

represents initial pulses of a force applied to the oscillators

andf, is the strength of the pulses.
There are no doubts that E(L) is not the only possible
way to introduce the fractional derivatives into the oscillator

equation. For instance, Ref. 37 discusses an approach based

on the Caputo fractional derivative definition. Nevertheless
the choice of the Riemann-Liouville fractional derivative
with lower limit t— —oo is not arbitrary(see Appendix B

This choice provides us with the possibility to establish a
physically reasonable initial condition and to discuss the

Green’s function of Eq(1).

A. Naive approach

Using definition(B3), one can obtain a Fourier transform
of the Green’s functions for Eq$l) and(2) as

~ foV(]jis
= 3
Xa(w) (iw)278+1/(2)78 ( )
and
- f
Xo(@)= e (@

(iw)+2 T_l(iw)-l-a)g'
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FIG. 1. Schematic picture presenting solutions of fractional
[dash-dot line forx.(t)] and conventionalsolid line for x(t)]

oscillator equationswg=r¢=1, fy=1, ¢=0.15, andr= 6%.

2 2
fowg

[wz—(wS—Z 772)]24—492772'

7(5(w)= (8)
where ¢, =|co§ m(2—¢)/2]|, and the asterisk denotes com-
plex conjugation.

In the above equations the term§ °¢, and wi— 27 2
settle positions of the maxima of the spectral peaks while
vg %[1—¢?] and 4027 2 determine their height. Thus,

Inverting the above equations, one can immediately geeomparing Eqs(7) and(8), one could establish the following

the solutions

Xs(t):fO( VOt)178E278,278[_(VOt)Zis] (5)
for Eq. (1) and
B fowoe—t/T .
X[()=——7—sinQ ) (6)

for Eq. (2); whereQ = \Jw3— 7 2 andE, ,(y) is the Mittag-
Leffler function (see Appendix A

Note that both Eqs(5) and (6) are physically valid only
for t=0, whereas for-»<t<0, x(t)=0. From a physical

system of equations:

o= T2 77,
20
V1- g2 =" ©

Resolving this system one finds the set of parametgts
wg, &, andr for those spectral intensiti€g) and (8) of the
Green’s function$5) and(6) which have the same peak po-
sitions and height of their maxima.

Unfortunately, the exact solution of the transcendental
system(9) is not obvious. Thus, let us discuss the situation

point of view, this fact is a consequence of the casualitywheree <1 andr < wy; in other words, the situation when

principle. For Eq.(6), this directly follows from Eq(4) that
has poles only in the upper part of the complex plane.
Thus, inverting Eq.(4) one obtainsx,(t)=0 for t<0. In
contrast, for Eq(3) in order to provide the casuality prin-
ciple x,(t)=0 for t<0, one must establish the rule for by-
passing of branching points in E().

In Fig. 1, one can see an example of solutitB)sand(6).
Qualitatively, the behavior of those solutions is similar. Both
exhibit oscillations ofx(t) with decreased amplitude over
time. Thus, let us compare those functions quantitatively. Fo

this, let us calculate the spectral intensity’(w)

=X(w)X(w)* for the Green’s-function spectf8) and (4),
12032

[0? =15 "o, ]2

Xe(w)= Ry (@)

+vg 21— ¢?]

and

vibrations of the oscillators are weakly damped. After linear-
ization, systen(9) gives

VoE wq,
4
e= .
T WoT
In Fig. 2, one can see the frequency dependence of the
spectral intensity, reat’ (w) and imaginaryx”(w) parts of
the Green’s-function spectr@) and (4), which obey rela-
tionship (10). The spectral intensity peak for the fractional
oscillator is a little broader than the peak corresponding to
the conventional oscillator. Thus, even for weak damging
linear approximatiop the total energy losses are larger in the
case of the fractional oscillator. The difference between the
behavior of fractional and conventional oscillators is even

more clear forx' (w) andX”(w).

(10
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Suppose that the ratio of operaf?),g andIAZO norms is a small

parametefiF o 'F ||<1. In this case, the solutiax(t) could
be represented as a series of perturbation-theory corrections
Xi(t),

X(1)= 2 x(1). (13)
k=0

The simplest way to calculate perturbation series in our
case is to use the Fourier transform, which for the unper-
turbed operator gives

Fo=(i0)’+ w?. (14)

For a fractal oscillator equation, the perturbation operator
may be represented as

2
FIG. 2. (a) Spectral intensity normalized on its maximal value |“:€:w8Dt2—8_ — (15)
fzm. (b) Real and imaginary parts of the Green'’s functions normal- d t?
ized onf,,. On both figures, the dash-dot lines represent fractional . . .
oscillators and solid lines represent conventional oscillators. For allVhich after Fourier transform gives
the curveswy= vy, 7 '=0.1wg, ande=4(mr wor) 1~0.127. -
F.=wi(iw)? = (i) (16)
B. Perturbation theory Then, in the case of a fractal oscillator following EG9),
In general, the considerations presented above show théie Fourier transform of the first-order term is
the presence of a fractional derivative in the oscillator equa-

tion is qualitatively equivalent to the presence of a dissipa- - fowo[ wi(iw)? *+ w?]
tive term in the conventional oscillator equation. There are X p(@)=— 7 23 - 17
exact solutions for both models. However, the fractional os- (wp— %)

lcillator ethat@gn ?S v(\;ell ag tlhe fqualltion of a dgmhped OSdCillThe standard technique allows us to invert this expression
lator are the idealized models of real systems. Other mo €&nd obtain forF, a first-order term in the perturbation series
involving a fractional time derivative could not imply exact

solutions. Therefore, in other possible applications of the
fractional calculus, one may be interested in an approximated
solution obtained in terms of the perturbation theory. Thus, x, _(t)= 0

mE
a)ot COS wot) + S|n( wot) - wot CO{ wot__)

let us demonstrate the perturbation-theory technique in the 2 -
case of a fractional oscillator. e

The perturbation theory is a standard tool that is utilized —(1—g)sin wot— 7) . (18
in various fields of modern physidsee, for example, Ref.

38 on statistical mechanicsThere are many ways to estab- For a conventional damped oscillator equation, the pertur-
lish perturbation series. In Appendix C, we review basic defi-b i 1 b P d q ’ P
nitions of the perturbation approach we used here. ation operator may be expressed as

Let us start with the equation of an oscillator without any

energy losses, which we will regard as the unperturbed sys- = :E i (19
tem, Tordt’
which after Fourier transform gives
. d’x(t)
Folx(D)]=———t wgx(t)=fed(1), (12) . 2w
dt F.= . (20)

T

whereF, is a differential operator corresponding to the UN-Thus, following the procedure described above, one could
perturbed solutiorxy(t) = fysin(wgt) for t=0. For —w<t obtain

<0, Xq(t)=0 due to the casuality principle.
If there is a perturbation that can represented through the

perturbation operatdf,, thenx(t) obeys the following: Xiw)=———F—>5= (21)

(Fo+Fp)lx(D)]="foa(t). (12 and after inverting,
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fot y ® ”
Xp,A() = = —sin(wqt). (22) v ’

A100000080000000
VVUVTUUUVUVUVUTVT
It is interesting to note that the series expansion of Eq.

(18) for e<1 givesxy  (t)~ — (fom wot e/4)sin(wgt). Then, | |

comparing this with Eq(22), one could again obtain result &
(10). This proves that the developed perturbation approach is o o )
consistent with an exact solutid®). FIG. 3. Schematic picture explaining notations of E@S) and

Another observation is that the first-order correction of(¢%:
perturbation theory for a damped oscillator equation coin-
cides with the first-order term of Taylor's expansion for exact ~ 2 w5 “08,(w)—fowy °
solutions(6) with respect to the small parametér and the Ee(w)= 202+ (iw)>° ' (25)
additional condition 7~ '<w,. However, in general, the 0
terms of perturbation series do not necessarily coincide witland
Taylor’'s expansion terms because in the case of the pertur-

bation approach described above, the role of small param- ~ _fo wg
eters belongs not te and (wy7) %, but to||F,*F,|| and 7 @)= (i 0)2+27 Y w)]
IFo .

L 2w560,(0)~ fowg
C. Two bodies linked by a spring w)= (iw)2+2 7_—1(i w)+2 wo,

(26)

The next model problem that could help us clarify physi-
cal features of a fractional oscillator is the problem of two
bodies linked by a spring with dissipatigsay two bodies
situated in some viscose mediurhet us discuss two possi-
bilities to introduce energy losses: through fractional time
derivatives and by the conventional approach. We will only
discuss a one dimensional problem and will assume that both 7.(t)= 0
bodies are equivalent. Thus, for these two models one could 2I(2-e)

establish two systems of equations 1os _—
E(D) =& To(wot)™ °Ep_p 20— —2(wot)= "], (27)

for system(24). In those equationsj,,(w) is once again the
Dirac 6 function, but in the frequency domain.

Using exact solutiongs) and(6) from Eqgs.(25) and(26),
one gets

(wot)* ™%,

_ fowo ® and
D [ 7.(0)]=—5 (1),

f
. . ) nA0=-3 2 (1-e 2,
Df “[&:(D]+2wh “(£.(1)—&o)=—fowg “0,(1)
(23 )
fowpge M7
for the fractal oscillator and E()=¢&0— \/%sin(tx/z ws—72). (29
2_
d?9.(t) +E d 7.(t) =f—og ) vvllherer.;(t)_zlo andé(t)= &, for —o<t<0 due to the casu-
dt2 r dt 2 9 ality principle.

Figure 4 represents an example of soluti@id and(28).
From Fig. 4b), one can see that the vibrations of fractional
and conventional oscillators are qualitatively similar. For
large energy losses(1=0.3w, ands~0.4) after the initial
(24)  pulse, both oscillators perform a few vibrations and then re-
turn to equilibriumé&(t)— &,. However, the behavior of the
for the conventional model. centers of gravity of those systems is qualitatively different
In the above equationsy=(y,+Yy,)/2 is the center of [see Fig. 4a)]. For the conventional oscillator, the evolution
gravity position,é=y,—Yy; is the distance between the bod- of the center gravity is finite, and at sufficiently long times
ies’ centersé is the distance between the bodies’ centers ateaches a stationary positidgwg7/4. The evolution of the
rest, andfyg(t) once again represents the initial pulse of acenter of gravity for the fractional oscillator is infinite and
force applied to the first bod{see Fig. 3. exhibits a power-law behavior.
After Fourier transform for syster{23), one gets

d?6.(t)  2d (D)
qe "7 dr 2o )=o)

III. CONCLUSIONS AND DISCUSSION

l1-¢
D)= E P Let us summarize and discuss the results obtained. First,

2 (iw)?®’ one can appreciate the exact soluti@ obtained for the

184201-4
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ne 2] @ e Relationshipg10) establish a connection between the or-

i der of the fractional time derivative and the parameters of the

e conventional oscillator equation. The general heuristic merit

1 e fow,v/4 of this result is the fact that in the framework of the model

[=- st oos==s discussed, the order of the fractional derivative was related to

2 the vibrational frequencyw, as well as to the decay constant

% 7~ 1. The vibrational frequency is dependent on the proper-

0 4 8 12 ties of the system itself. For example, in the case discussed

0 wp is dependent on the spring elastic modulus and the

£ b) masses of the bodies. The decay constant is dependent on the

' property of the medium where the system is situated. For

P instance, in the case discussedcould be related to the

/ RN 12 viscosity of the medium. Thus, Egel0) show that the frac-

@t tional time derivative in the oscillator equation could be re-
garded as a result of the interplay between the system itself
and the surrounding medium.

In Sec. Il B of the presented paper, the application of the
perturbation approach to the problem of fractional oscillator

FIG. 4. Center of gravity positiofa) and distance between the is discussed. _Using this approach one could again obtain the
bodies’ centergb) as a function of time. On both figures, dash-dot €SUlt(10). This proves the self-consistency of the methods
lines represent the fractional oscillator and solid lines represent thésed. At first glance it seems that the existence of an exact
conventional oscillator. For all the curves; '=0.3w,, solution (5) depreciates the significance of the perturbation
=4(7 wor) " 1~0.382, andfy=&,=1. method. However, the presented perturbation approach could
be used not only for the problem of a fractional oscillator but
also for other problems involving fractional time derivatives.

In Sec. Il C, the problem of two bodies linked by a spring
avas discussed. This problem illustrates two significant points
In the application of the fractional time derivatives to physi-
cal problems. First of all, it once again highlights the rela-
tionships between the fractional time derivative and the dis-
sipative effects. Second, it shows that the fractional time

similar to Eq.(5) appears in relation to the fractional Cauchy de_riva;ihv.esf Ieaq to Ithe possibility of a new CZ"SS ?}f sftation—
problem and then later discussed as the probability densi[g/”ty' Is fractional stationary was mentioned in the frame-

for a time interval between two consecutive jumps for theWork of _the so-called fractional = time evolution

4,35,36 H H H i
continuous time random walk scheme. The authors of Ref_:onceptz. This concept establishes in addition to the

37 discuss a fractional oscillator model described by an inconventional constants a second class of stationary states that

tegral equation involving a fractional integral. However, they©P€Y the power-law time dependence. In Fig)4one can

assume the initial conditions in the same way as for the cong€€ @n illustration of this fact. After the initial pulse of a

ventional damped oscillator. From our point of view, as Wefqrce, the center of gravity pqsition of th_e conv_entional 0s-
mentioned in this paper, this is not fully correct. Thus theycnlator goes to a constant stationary position while the center
obtain a solution similar to Eg5) but without the power-law of gravity of the fract?onal oscillato'r goes to infin.ity as
factor (wot)2~°. Therefore, in the best of our knowledge fo(wot)! . The behavior of the fractional oscillator in this
until now nobody discussed the solution in fot8) in rela- case also illustrates the cqncept “Coarse_ graining” for de-
tion to the fractional oscillator problem. grees of freedom. The variablgs andy,, independent at

Solution (5) led us to the conclusion that introducing a short times, later become coupled and exhibit joint power-

fractional time derivative of the Riemann-Liouville type into 12W behavior.

the oscillator equation is qualitatively equivalent to introduc-_1here are no doubts that the models presented are simpli-
ing a dissipative term. This observation is not unexpectedf.'ed examples rather than models of real physical situations.
The worké®13-19250n anomalous diffusion and nonexpo- However, we hope that these examples help clarify general
nential relaxation also support this point. ideas that underlay possible physical application of fractional

The physical interpretation implies that the Green's func-f[ime derivatives. Moreover, the presented models could be

tion represents a response ddike impact. Therefore, the [MProved. For example, one could discuss nonharmonic vi-
Green's function is related to the complex susceptibility Ofbratlons and the problem of several linked fractional oscilla-
the systems discussed. The results represented in . 2 tors. In this case, the mentioned perturbation approach could

show that the complex Fourier image of the Green's functiorP® NelPful.
for a fractional oscillator exhibits a slight excess of the high-
frequency wing. Thus, at least hypothetically, the fractional

oscillator model could be utilized to explain nonuniform  One of us(Ya. E. R) wishes to thank The Hebrew Uni-
broadening in various applications of spectroscopic methodszersity of Jerusalem for its hospitality, and both authors

1.0

0.5\ \d

fractional oscillator equation. In this regard, one must men
tion that the Mittag-Leffler function is commonly used in
many physical problems to express a solutions of differenti
equations involving the fractional time derivatives*>’For
example, Ref. 22, on the basis of the fractal time random
walk relaxation model, discusses relaxation function propor
tional to the Mittag-Leffler function. In Ref. 24, the solution
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APPENDIX A: DEFINITIONS

The Riemann-Liouville fractional derivative of order
—1<y<n is defined*>*as

n

d
aDg[f(t)]=ﬁal?77[f(t)], (A1)

where

U 1 ! 9—1 ’ ’
alt[f(t)]sza(t_t )P H(t)dt (A2)

is the Riemann-Liouville fractional integral of orderQy
with lower limitt—a, —w<a<t<+wo, neN, andl'(9) is
theT function.

An alternative way to define a fractional derivative of the
Riemann-Liouville type is

DIf(O]=aly7 dtnf(t)]. (A3)
Then
_ 1 sWia)(t—a)k Y
aDz[f<t>]=aDz[f<t>]+k§0F((?(+—l:)w, (A4)

where

d*f(t)

£ (g) =

t—a

Note that in this paper, instead of the usual way of

writing_..D{ for a fractional derivative of ordety with a
lower limit t— —o, we will use notatiorD} for simplifica-
tion.

Sometimes solution of differential equations involving the

PHYSICAL REVIEW B 66, 184201 (2002

f(r-%—ioc
o—iw
with Laplace variables, fixed o>0, andi=—1. Then,
from Egs.(A1) and(B1la), for a=0, one realize8>*that

1

5 ef, (s)ds, (Blb)

L YT (9)]=f(t)=

n—-1
c[oDz[fu)]]:sffL(s)—go $DY RO o -
(B2
Let
f[f(t)]z?(w)zfxefiwtf(t)dt (B3a
be the direct Fourier transform, and
F_l[?(w)]=f(t)=%f+meith(w)dw (B3b)

be the inverse Fourier transform with cyclic frequensy
Then, from Egs.(Al), (A3), and (B3a for a— —, one
could obtaif*—34

AP WN=ADIf(O]=(0)T(w). (B4
Next, let us discuss a differential equation
FLf(t)]=0, (B5)

where F is a differential operator involving the fractional
time derivatives of the highest-org®; with n—1<vy<n
and solutionf(t) is defined fort>0 . In order to obtain this
solution following Eq.(B2), one must establishinitial con-
ditions in the form

oD MO 0r=CY, k=01,...n-1, (B6)

where allC} are constants. For an integer one easily
recovers a conventional way to establish the initial condi-

tions. For example, let us discus€[f(t)]=F(t)
+2 7 (t) + w3f(t), with y=2. Then, following Eq(B6)

fractional time derivatives may be represented through theh order to obtainf(t), one needs to establish the initial

so-called Mittag-Leffler functiot?

oy

EanV)= 2, Takib)

0

(A5)

APPENDIX B: INTEGRAL TRANSFORMS AND INITIAL
CONDITIONS

position f(0)=C2? and velocity f(0)=C3. However, for a
fractional y, the constant€ are hardly interpretable from
the physical point of view. Thus, let us discuss an alternative
approach.

It is knowrf'° that initial conditions for the homogeneous
differential equation(B5) could be converted into general-
ized sources on the right-hand side of the nonhomogeneous
equation

Let us now discuss Laplace and Fourier transforms of the

Riemann-Liouville fractional derivatives. Let us define the
direct Laplace transform as

LIf(t)]=T(s)= J:e*“f(t)dt (Bla)

and inverse Laplace transform as

FLT(t)]=g(t),

where the functiorg(t) is dependent on the initial conditions

themselves and the particular formfef In the general case,
the functiong(t) could involve generalized functions such as
the Dirac é function §(t) and the Heaviside step function

6(t). For example, if once agaifi[ f(t)]=f(t)+2 7 1f(t)

(B7)

184201-6
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+wf(t), then the initial conditiong(0)=C3 andf(0)=C3  ||F,'F,[<1, where|- - -| means the norm of the operator.
could be converted into g(t)=6(t)C3+&(t)(C5  In this case let us find the solution of the total equation
+271C). ..

However, for certain initial condition$B6), in order to (FotFpx(H)]=g(t) (€2

obtain the solutionf(t) of differential equation(B5) for t in the form

>0, one needs to establigh(t) for —oc<t<+o. More -
rigorously speaking, one needs to establish an analytic con- x(t) = 2
tinuation of F and f(t) for —o<t=<0. This can easily be =
done by replacing all fractional derivativg®; with lower
limit t—0 with fractional derivative®/ with lower limit t

(C3

The first term of the perturbation series, which corresponds
to the solution of an unperturbed equati@y) is

— —00,
Then, the solution of the problem can be performed in the Xo(t)=Fg a(t)]. (C4
f k of th 's-functi h. In thi
Orﬁgmranvl\g firost treEOIGvreeens unction: approach. In this CaseThen let us discuss the second term of the s&@&s. In this
case,
FIG(t)]=&(1), B8 T = =
[GH1=a) BB (Bt B lxo(0) +xa(D]=Folxo(D)]+ Eolxa(D)]
where G(t) is the so-called Green’s function of E(B7). . .
Then, using the convolution theorem, the solutic() for T FplXo(D) ]+ Fplx1 (1) ]=9g(1).
any g(t) could be obtained as (C5)
+o0 ) o Taking into account Eq.C4) and neglecting the term
= jﬁm G(t—-t")g(t)dt". (BY) ﬁp[xl(t)] of the second order with respect to the perturba-

tion, one could obtain
In contrast toC/, a physical interpretation of(t) is more

clear. For example, in Eqél) and(2), it represents an initial x1()=—Fg'F,Fo Ta(D)]. (Co)
pulse of a force and the Green'’s functions of those equatio
represent responses to this impact. Thus, due t¢Es), any
g(t) could be regarded as the amplitude of the force that (Fo+ Iip)[xo(t)+x1(t)+x2(t)]
changes with time.

MPhe next term could be evaluated by a similar procedure

= FolXo(t) ]+ Fol X1(1) 1+ Fol X2(1) 1+ F o[ Xo(1)]

Let us di hysical system that obeys the different R+ FDo(h]=g(), €
equ:tigrsl ISCUSS a physical system that obeys the difieren IalLak ing into account Eq4C4) and (C6), and neglecting the

term Fp[xz(t)] of the third order with respect to the pertur-
ﬁo[x(t)]zg(t), (CY bation, one could realize

APPENDIX C: PERTURBATION SERIES

whereF, is an unperturbed differential operator. Then, let us Xo(t)=Fo 'FFo tFpFo Ta(D)]. (C8)
suppose that this physical system is exposed to the perturbq,hen similar considerations allow us to write

tion. Let F be the operator that describes this perturbation. o

Let us assume that boff, andF,, are linear operators and Xn()=(=1)"(Fg 'Fp)"Fo Ta(t)]. (C9)
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